首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   979篇
  免费   74篇
  国内免费   1篇
  1054篇
  2022年   8篇
  2021年   19篇
  2020年   12篇
  2019年   12篇
  2018年   14篇
  2017年   12篇
  2016年   21篇
  2015年   40篇
  2014年   31篇
  2013年   52篇
  2012年   55篇
  2011年   68篇
  2010年   37篇
  2009年   43篇
  2008年   53篇
  2007年   44篇
  2006年   43篇
  2005年   43篇
  2004年   46篇
  2003年   51篇
  2002年   36篇
  2001年   26篇
  2000年   15篇
  1999年   19篇
  1998年   9篇
  1997年   8篇
  1996年   8篇
  1995年   7篇
  1994年   11篇
  1993年   12篇
  1992年   18篇
  1991年   18篇
  1990年   5篇
  1989年   11篇
  1988年   8篇
  1987年   9篇
  1986年   10篇
  1983年   5篇
  1981年   6篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   7篇
  1976年   5篇
  1975年   5篇
  1973年   8篇
  1972年   5篇
  1970年   7篇
  1969年   6篇
  1967年   9篇
排序方式: 共有1054条查询结果,搜索用时 0 毫秒
101.
Cytokines mediate the host immune response to infectious micro-organisms. The objective of this study was to determine whether immune regulatory interleukins (IL-4, IL-5, IL-6, and IL-10) and inflammatory cytokines (Interferon-γ [INF-γ], tumor necrosis factor-β [TNF-β], IL-2, and IL-17) are associated with an increased risk of developing blood stream bacterial/fungal infection (BSI) in extremely low birth weight (ELBW) infants. ELBW infants from 17 NICHD Neonatal Research Network centers without early onset sepsis were studied. Cytokines were measured from blood on days 1, 3, 7, 14, and 21 after birth. 996 ELBW infants contributed a minimum of 4080 unique measurements for each cytokine during the five sampling periods. Infants with BSI had lower levels of the inflammatory cytokines IL-17 (p=0.01), and higher levels of the regulatory cytokines, IL-6 (p=0.01) and IL-10 (p<0.001). Higher levels of regulatory cytokines relative to pro-inflammatory cytokines were associated with increased risk of BSI even after adjusting for confounding variables. In ELBW infants, the ratio of immune regulatory cytokines to inflammatory cytokines was associated with development of BSI. Altered maturation of regulatory and inflammatory cytokines may increase the risk of serious infection in this population.  相似文献   
102.

Background  

Analogues of vitamin D3 are extensively used in the treatment of various illnesses, such as osteoporosis, inflammatory skin diseases, and cancer. Functional testing of new vitamin D3 analogues and formulations for improved systemic and topical administration is supported by sensitive screening methods that allow a comparative evaluation of drug properties. As a new tool in functional screening of vitamin D3 analogues, we describe a genomically integratable sensor for sensitive drug detection. This system facilitates assessment of the pharmacokinetic and pharmadynamic properties of vitamin D3 analogues. The tri-cistronic genetic sensor encodes a drug-sensoring protein, a reporter protein expressed from an activated sensor-responsive promoter, and a resistance marker.  相似文献   
103.
Mitochondria play a central role in energy metabolism and cellular survival, and consequently mitochondrial dysfunction is associated with a number of human pathologies. Reversible protein phosphorylation emerges as a central mechanism in the regulation of several mitochondrial processes. In skeletal muscle, mitochondrial dysfunction is linked to insulin resistance in humans with obesity and type 2 diabetes. We performed a phosphoproteomics study of functional mitochondria isolated from human muscle biopsies with the aim to obtain a comprehensive overview of mitochondrial phosphoproteins. Combining an efficient mitochondrial isolation protocol with several different phosphopeptide enrichment techniques and LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, including 116 phosphoserine, 23 phosphothreonine, and 16 phosphotyrosine residues. The relatively high number of phosphotyrosine residues suggests an important role for tyrosine phosphorylation in mitochondrial signaling. Many of the mitochondrial phosphoproteins are involved in oxidative phosphorylation, tricarboxylic acid cycle, and lipid metabolism, i.e. processes proposed to be involved in insulin resistance. We also assigned phosphorylation sites in mitochondrial proteins involved in amino acid degradation, importers and transporters, calcium homeostasis, and apoptosis. Bioinformatics analysis of kinase motifs revealed that many of these mitochondrial phosphoproteins are substrates for protein kinase A, protein kinase C, casein kinase II, and DNA-dependent protein kinase. Our results demonstrate the feasibility of performing phosphoproteome analysis of organelles isolated from human tissue and provide novel targets for functional studies of reversible phosphorylation in mitochondria. Future comparative phosphoproteome analysis of mitochondria from healthy and diseased individuals will provide insights into the role of abnormal phosphorylation in pathologies, such as type 2 diabetes.Mitochondria are the primary energy-generating systems in eukaryotes. They play a crucial role in oxidative metabolism, including carbohydrate metabolism, fatty acid oxidation, and urea cycle, as well as in calcium signaling and apoptosis (1, 2). Mitochondrial dysfunction is centrally involved in a number of human pathologies, such as type 2 diabetes, Parkinson disease, and cancer (3). The most prevalent form of cellular protein post-translational modifications (PTMs),1 reversible phosphorylation (46), is emerging as a central mechanism in the regulation of mitochondrial functions (7, 8). The steadily increasing numbers of reported mitochondrial kinases, phosphatases, and phosphoproteins imply an important role of protein phosphorylation in different mitochondrial processes (911).Mass spectrometry (MS)-based proteome analysis is a powerful tool for global profiling of proteins and their PTMs, including protein phosphorylation (12, 13). A variety of proteomics techniques have been developed for specific enrichment of phosphorylated proteins and peptides and for phosphopeptide-specific data acquisition techniques at the MS level (14). Enrichment methods based on affinity chromatography, such as titanium dioxide (TiO2) (1517), zwitterionic hydrophilic interaction chromatography (ZIC-HILIC) (18), immobilized metal affinity chromatography (IMAC) (19, 20), and ion exchange chromatography (strong anion exchange and strong cation exchange) (21, 22), have shown high efficiencies for enrichment of phosphopeptides (14). Recently, we demonstrated that calcium phosphate precipitation (CPP) is highly effective for enriching phosphopeptides (23). It is now generally accepted that no single method is comprehensive, but combinations of different enrichment methods produce distinct overlapping phosphopeptide data sets to enhance the overall results in phosphoproteome analysis (24, 25). Phosphopeptide sequencing by mass spectrometry has seen tremendous advances during the last decade (26). For example, MS/MS product ion scanning, multistage activation, and precursor ion scanning are effective methods for identifying serine (Ser), threonine (Thr), and tyrosine (Tyr) phosphorylated peptides (14, 26).A “complete” mammalian mitochondrial proteome was reported by Mootha and co-workers (27) and included 1098 proteins. The mitochondrial phosphoproteome has been characterized in a series of studies, including yeast, mouse and rat liver, porcine heart, and plants (19, 2831). To date, the largest data set by Deng et al. (30) identified 228 different phosphoproteins and 447 phosphorylation sites in rat liver mitochondria. However, the in vivo phosphoproteome of human mitochondria has not been determined. A comprehensive mitochondrial phosphoproteome is warranted for further elucidation of the largely unknown mechanisms by which protein phosphorylation modulates diverse mitochondrial functions.The percutaneous muscle biopsy technique is an important tool in the diagnosis and management of human muscle disorders and has been widely used to investigate metabolism and various cellular and molecular processes in normal and abnormal human muscle, in particular the molecular mechanism underlying insulin resistance in obesity and type 2 diabetes (32). Skeletal muscle is rich in mitochondria and hence a good source for a comprehensive proteomics and functional analysis of mitochondria (32, 33).The major aim of the present study was to obtain a comprehensive overview of site-specific phosphorylation of mitochondrial proteins in functionally intact mitochondria isolated from human skeletal muscle. Combining an efficient protocol for isolation of skeletal muscle mitochondria with several different state-of-the-art phosphopeptide enrichment methods and high performance LC-MS/MS, we identified 155 distinct phosphorylation sites in 77 mitochondrial phosphoproteins, many of which have not been reported before. We characterized this mitochondrial phosphoproteome by using bioinformatics tools to classify functional groups and functions, including kinase substrate motifs.  相似文献   
104.
After fertilization, lineage specification is governed by a complicated molecular network in which permissiveness and repression of expression of pluripotency- and differentiation-associated genes are regulated by epigenetic modifications. DNA methylation operates as a very stable repressive mark in this process. In this study, we investigated the relationship between DNA methylation and expression of pluripotency-associated genes (OCT4, NANOG and SOX2), a trophectoderm (TE)-specific gene (ELF5), and genes associated with neural differentiation (SOX2 and VIMENTIN) in porcine Day 10 (E10) epiblast, hypoblast, and TE as well as in epiblast-derived neural progenitor cells (NPCs). We found that OCT4, NANOG, and SOX2 were highly expressed in the epiblast and hypoblast, while VIMENTIN was only highly expressed in the epiblast. Moreover, low expression of OCT4, NANOG, SOX2 and VIMENTIN was noted in the TE. Most CpG sites of OCT4, NANOG, SOX2 and VIMENTIN displayed low methylation levels in the epiblast and hypoblast and, strikingly, also in the TE. Hence, the expression patterns of these genes were not directly related to levels of DNA methylation in the TE in contrast to the situation in the mouse. In contrast, ELF5 was exclusively expressed in the TE and was correspondingly hypomethylated in this tissue. In NPCs, we observed down-regulation of NANOG and OCT4 expression, which correlated with hypermethylation of their promoters, whereas VIMENTIN displayed up-regulation in accordance with hypomethylation of its promoter. In conclusion, DNA methylation is an inconsistently operating epigenetic mechanism in porcine E10 blastocysts, whereas in porcine epiblast-derived NPCs, expression of pluripotency-associated and differentiation genes appear to be regulated by this modification.  相似文献   
105.
Chemical repellents are promoted as a method to reduce ungulate–vehicle collisions and ungulate browsing damages to agricultural and forestry resources. We tested the effectiveness of two odour repellents (Mota FL and Wolf Urine) on the foraging behaviour and area avoidance of free-ranging roe deer (Capreolus capreolus) and red deer (Cervus elaphus). The effects of the repellents were assessed by comparing deer visitation rates to sand arenas before and after application of repellents and visitation rates to control arenas. Neither of the tested products reduced deer visitation rates. Rapid habituation to olfactory stimuli and lack of sensitivity to predator odours may explain the ineffectiveness of the repellents to alter the behaviour of the deer. The results indicate that the tested products have no effects on roe deer and red deer behaviour and suggest that the effectiveness of the chemical area repellents as a measure to reduce deer–vehicle collision risk and browsing damages is questionable.  相似文献   
106.
The Na+,K+-ATPase belongs to the P-ATPase family, whose characteristic property is the formation of a phosphorylated intermediate. The enzyme is also a defined target for cardiotonic steroids which inhibit its functional activity and initiate intracellular signaling. Here we describe the 4.6 ? resolution crystal structure of the pig kidney Na+,K+-ATPase in its phosphorylated form stabilized by high affinity binding of the cardiotonic steroid ouabain. The steroid binds to a site formed at transmembrane segments αM1-αM6, plugging the ion pathway from the extracellular side. This structure differs from the previously reported low affinity complex with potassium. Most importantly, the A domain has rotated in response to phosphorylation and αM1-2 move towards the ouabain molecule, providing for high affinity interactions and closing the ion pathway from the extracellular side. The observed re-arrangements of the Na+,K+-ATPase stabilized by cardiotonic steroids may affect protein-protein interactions within the intracellular signal transduction networks.  相似文献   
107.
Parkinson's disease is characterized by preferential degeneration of the dopamine-producing neurons of the brain stem substantia nigra. Imbalances between mechanisms governing dopamine transport across the plasma membrane and cellular storage vesicles increase the level of toxic pro-oxidative cytosolic dopamine. The microtubule-stabilizing protein p25α accumulates in dopaminergic neurons in Parkinson's disease. We hypothesized that p25α modulates the subcellular localization of the dopamine transporter via effects on sorting vesicles, and thereby indirectly affects its cellular activity. Here we show that co-expression of the dopamine transporter with p25α in HEK-293-MSR cells increases dopamine uptake via increased plasma membrane presentation of the transporter. No direct interaction between p25α and the dopamine transporter was demonstrated, but they co-fractionated during subcellular fractionation of brain tissue from striatum, and direct binding of p25α peptides to brain vesicles was demonstrated. Truncations of the p25α peptide revealed that the requirement for stimulating dopamine uptake is located in the central core and were similar to those required for vesicle binding. Co-expression of p25α and the dopamine transporter in HEK-293-MSR cells sensitized them to the toxicity of extracellular dopamine. Neuronal expression of p25α thus holds the potential to sensitize the cells toward dopamine and toxins carried by the dopamine transporter.  相似文献   
108.
Embryonic germ cells (EGC) are cultured pluripotent cells derived from primordial germ cells (PGC). This study explored the possibility of establishing porcine EGC from domestic breeds and Yucatan mini pigs using embryos at Days 17-24 of gestation. In vitro culture of PGC from both pooled and individual embryos resulted in the successful derivation of putative EGC lines from Days 20 to 24 with high efficiency. RT-PCR showed that gene expression among all 31 obtained cell lines was very similar, and only minor changes were detected during in vitro passaging of the cells. Genome-wide RNA-Seq expression profiling showed no expression of the core pluripotency markers OCT4, SOX2, and NANOG, although most other pluripotency genes were expressed at levels comparable to those of mouse embryonic stem cells (ESC). Moreover, germ-specific genes such as BLIMP1 retained their expression. Functional annotation clustering of the gene expression pattern of the putative EGC suggests partial differentiation toward endo/mesodermal lineages. The putative EGC were able to form embryoid bodies in suspension culture and to differentiate into epithelial-like, mesenchymal-like, and neuronal-like cells. However, their injection into immunodeficient mice did not result in teratoma formation. Our results suggest that the PGC-derived cells described in this study are EGC-like, but seem to be multipotent rather than pluripotent cells. Nevertheless, the thorough characterization of these cells in this study, and especially the identification of various genes and pathways involved in pluripotency by RNA-Seq, will serve as a rich resource for further derivation of porcine EGC.  相似文献   
109.
Glucosinolates are natural products in cruciferous plants, including Arabidopsis thaliana. CYP79A1 is the cytochrome P450 catalysing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of the cyanogenic glucoside dhurrin in sorghum. Both glucosinolates and cyanogenic glucosides have oximes as intermediates. Expression of CYP79A1 in A. thaliana results in the production of high levels of the tyrosine-derived glucosinolate p-hydroxybenzylglucosinolate, which is not a natural constituent of A. thaliana. This provides further evidence that the enzymes have low substrate specificity with respect to the side chain. The ability of the cyanogenic CYP79A1 to integrate itself into the glucosinolate pathway has important implications for an evolutionary relationship between cyanogenic glucosides and glucosinolates, and for the possibility of genetic engineering of novel glucosinolates.  相似文献   
110.
Stroke is one of the leading causes of severe disability and death in the world. In the present article we outline possibilities and limitations for future stroke research within the GenomEUtwin. The combined sample of twins born before 1958 from Denmark, Finland, and Sweden, and available for follow-up into the second millennium for non-fatal and fatal stroke events through national inpatient and death registers exceeds 70,000 twin pairs. This sample size will enable the study of genetic influences on stroke and major stroke subtypes. Large samples of twins in GenomEUtwin have been followed up repeatedly through interviews and questionnaires concerning a variety of exposures and potential risk factors for stroke. We briefly outline how this information can be combined with the health register information for epidemiologic and genetic epidemiologic studies of stroke. We also present the number of twin pairs concordant and discordant for stroke in Denmark, Finland and Sweden, and time lags between events for twins concordant for stroke. This information illustrates that the number of affected sib pairs for linkage studies is relatively limited, but the sample sizes are promising for association studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号