首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   74篇
  420篇
  2022年   5篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   5篇
  2017年   5篇
  2016年   15篇
  2015年   16篇
  2014年   19篇
  2013年   24篇
  2012年   24篇
  2011年   20篇
  2010年   18篇
  2009年   7篇
  2008年   13篇
  2007年   13篇
  2006年   8篇
  2005年   12篇
  2004年   7篇
  2003年   5篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   6篇
  1998年   13篇
  1997年   6篇
  1996年   8篇
  1995年   10篇
  1994年   3篇
  1993年   2篇
  1992年   8篇
  1991年   7篇
  1990年   13篇
  1989年   12篇
  1988年   10篇
  1987年   4篇
  1986年   6篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1980年   8篇
  1979年   2篇
  1978年   7篇
  1977年   5篇
  1976年   2篇
  1973年   10篇
  1972年   2篇
  1971年   2篇
排序方式: 共有420条查询结果,搜索用时 9 毫秒
31.
Although the potential to adapt to warmer climate is constrained by genetic trade‐offs, our understanding of how selection and mutation shape genetic (co)variances in thermal reaction norms is poor. Using 71 isofemale lines of the fly Sepsis punctum, originating from northern, central, and southern European climates, we tested for divergence in juvenile development rate across latitude at five experimental temperatures. To investigate effects of evolutionary history in different climates on standing genetic variation in reaction norms, we further compared genetic (co)variances between regions. Flies were reared on either high or low food resources to explore the role of energy acquisition in determining genetic trade‐offs between different temperatures. Although the latter had only weak effects on the strength and sign of genetic correlations, genetic architecture differed significantly between climatic regions, implying that evolution of reaction norms proceeds via different trajectories at high latitude versus low latitude in this system. Accordingly, regional genetic architecture was correlated to region‐specific differentiation. Moreover, hot development temperatures were associated with low genetic variance and stronger genetic correlations compared to cooler temperatures. We discuss the evolutionary potential of thermal reaction norms in light of their underlying genetic architectures, evolutionary histories, and the materialization of trade‐offs in natural environments.  相似文献   
32.
Binding of ligand to its receptor is a stochastic process that exhibits fluctuations in time and space. In chemotaxis, this leads to a noisy input signal. Therefore, in a gradient of chemoattractant, the cell may occasionally experience a "wrong" gradient of occupied receptors. We obtained a simple equation for P(pos), the probability that half of the cell closest to the source of chemoattractant has higher receptor occupancy than the opposite half of the cell. P(pos) depends on four factors, the gradient property delC/sq. root of C, the receptor characteristic R(t)/K(D), a time-averaging constant I, and nonreceptor noise sigma(B). We measured chemotaxis of Dictyostelium cells to known shallow gradients of cAMP and obtained direct estimates for these constants. Furthermore, we observed that in shallow gradients, the measured chemotaxis index is correlated with P(pos), which suggests that chemotaxis in shallow gradients is a pure biased random walk. From the observed chemotaxis and derived time-averaging constant, we deduce that the gradient transducing second messenger has a lifetime of 2-8 s and a diffusion rate constant of approximately 1 microm(2)/s. Potential candidates for such second messengers are discussed.  相似文献   
33.
A collection of 821 rhizobacteria from cucumber, originating from different root locations and stages of plant development, was screened for potential biocontrol agents of Pythium aphanidermatum (Edson) Fitzp. The screening procedure exploited carbon source utilization profiles and growth rates of bacteria as indicators of a partial niche overlap with the pathogen. The bacteria were tested for growth on nine carbon sources (glucose, fucose, sucrose, maltose, asparagine, alanine, galacturonic acid, succinic acid, and linoleic acid), most of which are reported to be used by the zoospores of P. aphanidermatum in the infection process. The isolates were classified as fast- or slow-growing, depending on their growth rate in 1/10 strength TSB. By nonhierarchical cluster analysis, 20 clusters were generated of bacteria with similar profiles of carbon source utilization. Redundancy analysis showed that the type of root sample explained 47% of the variance found in the relative abundance of bacteria from the clusters. Bacteria from clusters using none or few of the carbon sources, e.g., maltose and linoleic acid, with many slow-growing isolates, showed a preference for plants in the vegetative or generative stage, or for old root regions (root base). Bacteria from clusters with fast-growing isolates, using many carbon sources, were relatively abundant in the seedling stage. A selection of 127 bacteria from the different clusters was tested for disease suppressive capabilities in bioassays on young cucumber plants in nutrient solution, inoculated with zoospores of P. aphanidermatum. Nine of these bacteria produced biosurfactants, and 27 showed antibiosis against mycelial growth in plate assays. For 31 isolates, significant positive effects on plant biomass were shown, as analyzed with a general linear regression model. For most isolates, these effects occurred only in one of two replicate assays and no reductions in the degree of root and crown rot were found. Of the isolates that used many of the tested carbon sources, only four had positive effects on plant biomass. The majority of the isolates that positively affected plant biomass used few to moderate numbers of carbon sources and did not produce antibiotics or biosurfactants. In conclusion, competition for the tested carbon sources with the zoospores did not play a decisive role in disease suppression, and no clear relation was found between ecophysiological traits and disease suppression. Only isolate 3.1T8, isolated from root tips in the generative stage of plant growth, significantly increased plant biomass and suppressed root and crown rot symptoms in five out of six bioassays. The isolate produced an antifungal substance in plate assays and showed biosurfactant production in several (cucumber-derived) media.  相似文献   
34.
The steady-state bacterial dry wt of Escherichia coli, growing under K+-limited conditions in the chemostat, was inversely dependent on the growth rate. This phenomenon was more carefully investigated in medium-flow stop experiments. Growth did not stop immediately but continued for a time, initially at the same rate as before. The dry wt increased to a value corresponding to a steady-state growth rate near zero, independent of the initial specific growth rate. This was observed in both the wild-type strain and a mutant that lacked the high-affinity K+ uptake system. The wild-type strain maintained a low extracellular K+ concentration both in the chemostat under steady-state conditions and after stopping the medium flow. The mutant, on the other hand, maintained a much higher extracellular K+ concentration in the steady state, which decreased to much lower values after stopping the medium flow. From the increase in bacterial dry wt and the low external K+ concentration after stopping the medium flow it is concluded that the intracellular K+ is redistributed among the cells, including new cells. The growth yield on K+ was highest in the stationary growth phase of a batch culture and all steady-state cultures converged ultimately to this yield value after the medium flow had been stopped. It is proposed that the growth rate of E. coli under K+-limited conditions is determined by the intracellular K+ concentration.  相似文献   
35.
Incomplete information regarding both selection regimes and the genetic basis of fitness limits our understanding of adaptive evolution. Among‐year variation in the genetic basis of fitness is rarely quantified, and estimates of selection are typically based on single components of fitness, thus potentially missing conflicting selection acting during other life‐history stages. Here, we examined among‐year variation in selection on a key life‐history trait and the genetic basis of fitness covering the whole life cycle in the annual plant Arabidopsis thaliana. We planted freshly matured seeds of >200 recombinant inbred lines (RILs) derived from a cross between two locally adapted populations (Italy and Sweden), and both parental genotypes at the native site of the Swedish population in three consecutive years. We quantified selection against the nonlocal Italian genotype, mapped quantitative trait loci (QTL) for fitness and its components, and quantified selection on timing of germination during different life stages. In all 3 years, the local Swedish genotype outperformed the nonlocal Italian genotype. However, both the contribution of early life stages to relative fitness, and the effects of fitness QTL varied among years. Timing of germination was under conflicting selection through seedling establishment vs. adult survival and fecundity, and both the direction and magnitude of net selection varied among years. Our results demonstrate that selection during early life stages and the genetic basis of fitness can vary markedly among years, emphasizing the need for multiyear studies considering the whole life cycle for a full understanding of natural selection and mechanisms maintaining local adaptation.  相似文献   
36.
Summary A generally applicable method is described for reintroduction of mutant plasmid-borne alleles to the chromosome of Klebsiella pneumoniae using bacteriophage . We, used this method to make stable chromosomal transposon insertions in genes for biosynthesis of pyrroloquinoline quinone in K. pneumoniae  相似文献   
37.
Postma JA  Lynch JP 《Annals of botany》2012,110(2):521-534

Background and Aims

During their domestication, maize, bean and squash evolved in polycultures grown by small-scale farmers in the Americas. Polycultures often overyield on low-fertility soils, which are a primary production constraint in low-input agriculture. We hypothesized that root architectural differences among these crops causes niche complementarity and thereby greater nutrient acquisition than corresponding monocultures.

Methods

A functional–structural plant model, SimRoot, was used to simulate the first 40 d of growth of these crops in monoculture and polyculture and to determine the effects of root competition on nutrient uptake and biomass production of each plant on low-nitrogen, -phosphorus and -potassium soils.

Key Results

Squash, the earliest domesticated crop, was most sensitive to low soil fertility, while bean, the most recently domesticated crop, was least sensitive to low soil fertility. Nitrate uptake and biomass production were up to 7 % greater in the polycultures than in the monocultures, but only when root architecture was taken into account. Enhanced nitrogen capture in polycultures was independent of nitrogen fixation by bean. Root competition had negligible effects on phosphorus or potassium uptake or biomass production.

Conclusions

We conclude that spatial niche differentiation caused by differences in root architecture allows polycultures to overyield when plants are competing for mobile soil resources. However, direct competition for immobile resources might be negligible in agricultural systems. Interspecies root spacing may also be too large to allow maize to benefit from root exudates of bean or squash. Above-ground competition for light, however, may have strong feedbacks on root foraging for immobile nutrients, which may increase cereal growth more than it will decrease the growth of the other crops. We note that the order of domestication of crops correlates with increasing nutrient efficiency, rather than production potential.  相似文献   
38.

Background

Glioblastoma multiforme (GBM) cells secrete large amounts of glutamate that can trigger AMPA-type glutamate receptors (AMPARs). This commonly results in Na+ and Ca2+-permeability and thereby in excitotoxic cell death of the surrounding neurons. Here we investigated how the GBM cells themselves survive in a glutamate-rich environment.

Methods and Findings

In silico analysis of published reports shows down-regulation of all ionotropic glutamate receptors in GBM as compared to normal brain. In vitro, in all GBM samples tested, mRNA expression of AMPAR subunit GluR1, 2 and 4 was relatively low compared to adult and fetal total brain mRNA and adult cerebellum mRNA. These findings were in line with primary GBM samples, in which protein expression patterns were down-regulated as compared to the normal tissue. Furthermore, mislocalized expression of these receptors was found. Sequence analysis of GluR2 RNA in primary and established GBM cell lines showed that the GluR2 subunit was found to be partly unedited.

Conclusions

Together with the lack of functional effect of AMPAR inhibition by NBQX our results suggest that down-regulation and afunctionality of AMPARs, enable GBM cells to survive in a high glutamate environment without going into excitotoxic cell death themselves. It can be speculated that specific AMPA receptor inhibitors may protect normal neurons against the high glutamate microenvironment of GBM tumors.  相似文献   
39.

Background

Many oncological drugs that are being used in the adjuvant setting were first submitted for reimbursement in the metastatic stage, with differences in incremental cost-effectiveness ratios (ICERs) in both settings having potential implications for reimbursement and pricing. The aim of this study is to identify a possible trend in the cost-effectiveness for the early/adjuvant and late/metastatic stages of oncological drugs through review and case study.

Methods

We reviewed pairs of cost-effectiveness analyses of the same oncological drug in different stages for Scotland and the Netherlands. The case study in this report was directed at trastuzumab in the Dutch situation. Using a simplified Markov model, the cost-effectiveness in early and late stage of breast cancer was calculated and compared to the findings from the review.

Results

Comparable studies were found for cetuximab, bortezomib and bosutinib. Treatments in the late stage were found to be more expensive per QALY by a factor ranging from 1.5 to 12. The case study provided a similar result; late stage treatment was more expensive by a factor 10. Using, for example, a threshold of €80,000/QALY, the early stage of cetuximab, bosutinib and trastuzumab are deemed cost-effective, while their compared late stage is lifted over the threshold and potentially considered not cost-effective.

Conclusion

ICERs of oncological drugs used in different stages are more unfavourable in the late stage than in the early stage. Applying a reasonable threshold may result in early stage treatment being deemed cost-effective while late stage potentially not. Authorities should be aware of this when assessing oncological drugs and interpreting the corresponding ICERs, in the situation where oncological drugs are generally most submitted for reimbursement in the late stage initially.  相似文献   
40.
We have tested the hypothesis that the autoamplification of two-component regulatory systems results in "learning" behavior, i.e., that bacteria respond faster or more extensively to a signal when a similar signal has been perceived in the past. Indeed, the induction of alkaline phosphatase activity upon phosphate limitation was faster if the cultures had been limited for phosphate previously, and this faster response correlated with the autoamplification of the cognate two-component system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号