首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
  26篇
  2017年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有26条查询结果,搜索用时 0 毫秒
21.
Sulfated polysaccharides isolated from Capsosiphon fulvescens and fractionated using ion-exchange chromatography were investigated to determine their chemical and molecular characteristics and biological activities. The crude and fractionated polysaccharides (F(1), F(2), and F(3)) consisted mostly of carbohydrates (28.9-67.0%), uronic acids (1.6-9.2%) and sulfates (5.2-13.4%) with various amounts of proteins (2.1-53.7%). Their monosaccharide levels were significantly different including rhamnose (20.8-65.2%), xylose (13.0-37.1%) and mannose (11.6-65.1%). The polysaccharides contained one or two subfractions with molecular weights (M(w)) ranging from 401.7×10(3) to 6232×10(3)g/mol. These polysaccharides (the crude and fraction F(2)) strongly stimulated macrophage cells, RAW264.7 cell line, producing considerable amounts of NO, PGE(2) and cytokines which suggested that they could be strong immunostimulators. The main backbone of the most immunoenhancing polysaccharide (F(2)) was suggested by GC-MS and NMR to be the following:  相似文献   
22.
Biologically generated nitric oxide appears to play a pivotal role in the control of a diverse series of physiologic functions. Iron-chelates and low-frequency EPR spectroscopy have been used to verify in vivo production of nitric oxide. The interpretation of in vivo identification of nitric oxide localized at the site of evolution in real time is complicated by the varied kinetics of secretion. The quantitative efficiency of the spectroscopic measurement, so important in understanding the physiology of nitric oxide, remains elusive. The development of a more stable iron-chelate will help better define nitric oxide physiology. In this report, we present data comparing the commonly used ferro-di(N-methyl-D-glucamine-dithiocarbamate) (Fe2+(MGD)2) and the novel chelate ferro-di(N-(dithiocarboxy)sarcosine) (Fe2+(DTCS)2) quantifying the in vitro and in vivo stability of the corresponding spin trapped adducts, NO-Fe(MGD)2 and NO-Fe(DTCS)2. Finally, very low frequency EPR spectroscopy has been used to evaluate the pharmacokinetics of NO-Fe(MGD)2 and NO-Fe(DTCS)2 in mice in real time.  相似文献   
23.
Contamination of Aflatoxins in Herbal Medicinal Products in Thailand   总被引:3,自引:0,他引:3  
Twenty-eight herbal medicinal products from Thailand were investigated for aflatoxin (AF) contaminations by employing a specific HPLC assay for the determination of AFB1, B2, G1 and G2. The samples were extracted with 80% (v/v) methanol in water before further cleaned up with an immunoaffinity column and followed by the detection of AFs by using an electrochemically post-column derivatization with iodine and fluorescence detector. The extraction procedure was optimized in order to obtain the best recovery. The method was successfully carried out with all the herbal products diversified as to compositions and dosage forms. The results revealed that five (18%) of herbal samples were contaminated with detectable amount of the total AFs ranging from 1.7 to 14.3 ng/g. The association between particular herbal/plant and the AF contaminated could not be determined due to the low frequency of positive samples. The contaminated products were those in tablet (4) and capsule (1) dosage forms. It was possible that the original fungal infection of these products may have been derived from either the crude herbal or other ingredients making these preparations, such as starch. In conclusion, none of the AF contaminated level found was above the current legislative level permissible in Thailand (20 ng/g). A word of caution, however, exporting some high AF-contaminated herbal products to countries where more stringent permissable level of aflatoxins exist could result in trade Barriers.  相似文献   
24.
The free radical, nitric oxide (√NO), is responsible for a myriad of physiological functions. The ability to verify and study √NO in vivo is required to provide insight into the events taking place upon its generation and in particular the flux of √NO at relevant cellular sites. With this in mind, several iron-chelates (Fe2+(L)2) have been developed, which have provided a useful tool for the study and identification of √NO through spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. However, the effectiveness of √NO detection is dependent on the Fe2+(L)2 complex. The development of more efficient and stable Fe2+(L)2 chelates may help to better understand the role of √NO in vivo. In this paper, we present data comparing several proline derived iron–dithiocarbamate complexes with the more commonly used spin traps for √NO, Fe2+-di(N-methyl-D-glutamine-dithiocarbamate) (Fe2+(MGD)2) and Fe2+-di(N-(dithiocarboxy)sarcosine) (Fe2+(DTCS)2). We evaluate the apparent rate constant (kapp) for the reaction of √NO with these Fe2+(L)2 complexes and the stability of the corresponding Fe2+(NO)(L)2 in presence of NOS I.  相似文献   
25.
Trichoderma harzianum, isolate T 01-22, was cultured on either sorghum grains, ground mesocarp fibre of oil-palm or oil-palm shell, both amended with urea fertilizer (100:1, w/w). T. harzianum cultured on ground mesocarp fibre was then used to coat seeds of Chinese kale (Brassica alboglabra Bailey) to control damping-off of seedlings caused by Pythium aphanidermatum. Biomass of T. harzianum cultured on ground mesocarp fibre of oil-palm was more effective than Captan and Benomyl, but less effective than Metalaxyl, in controlling damping-off of Chinese kale seedlings. Viability of T. harzianum growing on sorghum grains was reduced significantly during 7 months storage, followed by that of T. harzianum cultured on ground mesocarp fibre and oil-palm shell, both amended with urea fertilizer (46-0-0) at 100:1 (w/w).  相似文献   
26.
Vector‐borne diseases (VBDs) are defined as infectious diseases of humans and animals caused by pathogenic agents such as viruses, protists, bacteria, and helminths transmitted by the bite of blood‐feeding arthropod (BFA) vectors. VBDs represent a major public health threat in endemic areas, generally subtropical zones, and many are considered to be neglected diseases. Genome sequencing of some arthropod vectors as well as modern proteomic and genomic technologies are expanding our knowledge of arthropod–pathogen interactions. This review describes the proteomic approaches that have been used to investigate diverse biological questions about arthropod vectors, including the interplay between vectors and pathogens. Proteomic studies have identified proteins and biochemical pathways that may be involved in molecular crosstalk in BFA‐pathogen associations. Future work can build upon this promising start and functional analyses coupled with interactome bioassays will be carried out to investigate the role of candidate peptides and proteins in BFA‐human pathogen associations. Dissection of the host–pathogen interactome will be key to understanding the strategies and biochemical pathways used by BFAs to cope with pathogens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号