首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   6篇
  国内免费   1篇
  128篇
  2021年   2篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   1篇
  2010年   5篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1974年   9篇
  1973年   4篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
  1954年   4篇
  1953年   2篇
  1952年   1篇
  1940年   1篇
  1931年   2篇
  1930年   1篇
  1929年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
11.
* BACKGROUND AND AIMS: Covalent linkages between xyloglucan and rhamnogalacturonan-I (RG-I) have been reported in the primary cell walls of cultured Rosa cells and may contribute to wall architecture. This study investigated whether this chemical feature is general to angiosperms or whether Rosa is unusual. * METHODS: Xyloglucan was alkali-extracted from the walls of l-[1-3H]arabinose-fed suspension-cultured cells of Arabidopsis, sycamore, rose, tomato, spinach, maize and barley. The polysaccharide was precipitated with 50 % ethanol and subjected to anion-exchange chromatography in 8 m urea. Eluted fractions were Driselase-digested, yielding [3H]isoprimeverose (diagnostic of [3H]xyloglucan). The Arabidopsis cells were also fed [6-14C]glucuronic acid, and radiolabelled pectins were extracted with ammonium oxalate. * KEY RESULTS: [3H]Xyloglucan was detected in acidic (galacturonate-containing) as well as non-anionic polysaccharide fractions. The proportion of the [3H]isoprimeverose units that were in anionic fractions was: Arabidopsis, 45 %; sycamore, 60 %; rose, 44 %; tomato, 75 %; spinach, 70 %; maize, 50 %; barley, 70 %. In Arabidopsis cultures fed d-[6-(14)C]glucuronate, 20 % of the (galacturonate-14C)-labelled pectins were found to hydrogen-bond to cellulose, a characteristic normally restricted to hemicelluloses such as xyloglucan. * CONCLUSIONS: Alkali-stable, anionic complexes of xyloglucan (reported in the case of Rosa to be xyloglucan-RG-I covalent complexes) are widespread in the cell walls of angiosperms, including gramineous monocots.  相似文献   
12.
Recent studies have shown that some clupeid fishes, including shad and menhaden, can detect ultrasound (sound with frequencies higher than 20 kHz) and actively avoid it. However, other clupeids, including sardines and anchovies, do not detect ultrasound. The hearing abilities of herring are of particular interest because of their commercial importance, our reliance on acoustics to monitor their populations and behavioural evidence of responses to high-frequency sound by some clupeid species. We measured the hearing sensitivity of Pacific herring (Clupea pallasii) using the auditory brainstem response and found that they were unable to detect ultrasonic signals at received levels up to 185 dB re 1 microPa. Herring had hearing thresholds at lower frequencies (100-5000 Hz) that were typical of other non-ultrasound-detecting clupeids. This lower-frequency hearing sensitivity could explain the results of several earlier studies showing responses to broadband sounds.  相似文献   
13.
14.
Proliferation of vascular smooth muscle cells is a characteristic of pathological vascular remodeling and represents a significant therapeutic challenge in several cardiovascular diseases. Docosahexaenoic acid (DHA), a member of the n-3 polyunsaturated fatty acids, was shown to inhibit proliferation of numerous cell types, implicating several different mechanisms. In this study we examined the molecular events underlying the inhibitory effects of DHA on proliferation of primary human smooth muscle cells isolated from small pulmonary artery (hPASMCs). DHA concentration-dependently inhibited hPASMC proliferation, induced G1 cell cycle arrest, and decreased cyclin D1 protein expression. DHA activated the unfolded protein response (UPR), evidenced by increased mRNA expression of HSPA5, increased phosphorylation of eukaryotic initiation factor 2α, and splicing of X-box binding protein 1. DHA altered cellular lipid composition and led to increased reactive oxygen species (ROS) production. DHA-induced ROS were dependent on both intracellular Ca(2+) release and entry of extracellular Ca(2+). Overall cellular ROS and mitochondrial ROS were decreased by RU360, a specific inhibitor of mitochondrial Ca(2+) uptake. DHA-induced mitochondrial dysfunction was evidenced by decreased mitochondrial membrane potential and decreased cellular ATP content. DHA triggered apoptosis as found by increased numbers of cleaved caspase-3- and TUNEL-positive cells. The free radical scavenger Tempol counteracted DHA-induced ROS, cell cycle arrest, induction of UPR, and apoptosis. We conclude that Ca(2+)-dependent oxidative stress is the central and initial event responsible for induction of UPR, cell cycle arrest, and apoptosis in DHA-treated hPASMCs.  相似文献   
15.
The risk of effects to fishes and other aquatic life from impulsive sound produced by activities such as pile driving and seismic exploration is increasing throughout the world, particularly with the increased exploitation of oceans for energy production. At the same time, there are few data that provide insight into the effects of these sounds on fishes. The goal of this study was to provide quantitative data to define the levels of impulsive sound that could result in the onset of barotrauma to fish. A High Intensity Controlled Impedance Fluid filled wave Tube was developed that enabled laboratory simulation of high-energy impulsive sound that were characteristic of aquatic far-field, plane-wave acoustic conditions. The sounds used were based upon the impulsive sounds generated by an impact hammer striking a steel shell pile. Neutrally buoyant juvenile Chinook salmon (Oncorhynchus tshawytscha) were exposed to impulsive sounds and subsequently evaluated for barotrauma injuries. Observed injuries ranged from mild hematomas at the lowest sound exposure levels to organ hemorrhage at the highest sound exposure levels. Frequency of observed injuries were used to compute a biological response weighted index (RWI) to evaluate the physiological impact of injuries at the different exposure levels. As single strike and cumulative sound exposure levels (SEL(ss), SEL(cum) respectively) increased, RWI values increased. Based on the results, tissue damage associated with adverse physiological costs occurred when the RWI was greater than 2. In terms of sound exposure levels a RWI of 2 was achieved for 1920 strikes by 177 dB re 1 μPa(2)?s SEL(ss) yielding a SEL(cum) of 210 dB re 1 μPa(2)?s, and for 960 strikes by 180 dB re 1 μPa(2)?s SEL(ss) yielding a SEL(cum) of 210 dB re 1 μPa(2)?s. These metrics define thresholds for onset of injury in juvenile Chinook salmon.  相似文献   
16.
17.
Juvenile Chinook salmon, Oncorhynchus tshawytscha, were exposed to simulated high intensity pile driving signals to evaluate their ability to recover from barotrauma injuries. Fish were exposed to one of two cumulative sound exposure levels for 960 pile strikes (217 or 210 dB re 1 μPa(2)·s SEL(cum); single strike sound exposure levels of 187 or 180 dB re 1 μPa(2)?s SEL(ss) respectively). This was followed by an immediate assessment of injuries, or assessment 2, 5, or 10 days post-exposure. There were no observed mortalities from the pile driving sound exposure. Fish exposed to 217 dB re 1 μPa(2)·s SEL(cum) displayed evidence of healing from injuries as post-exposure time increased. Fish exposed to 210 dB re 1 μPa(2)·s SEL(cum) sustained minimal injuries that were not significantly different from control fish at days 0, 2, and 10. The exposure to 210 dB re 1 μPa(2)·s SEL(cum) replicated the findings in a previous study that defined this level as the threshold for onset of injury. Furthermore, these data support the hypothesis that one or two Mild injuries resulting from pile driving exposure are unlikely to affect the survival of the exposed animals, at least in a laboratory environment.  相似文献   
18.
The development of the sensory epithelium of the saccular macula of Opsanus tau was studied with transmission electron microscopy. In the 10-12 somite embryo all cells of the newly formed otocyst are morphologically undefined, having an apically placed cilium with an underlying basal body and parabasal body. Junctional complexes are characterized primarily by tight junctions and a few desmosomes. In the 17-somite embryo the sensory cells begin to differentiate and are definable by the development of microvilli, which lack a cuticular plate. When the embryo has approximately 25-30 somites, ganglion cells differentiate and send their nerve processes toward the thin, disrupted basal lamina and the developing rhombencephalon. Desmosomes are more definable in the sensory regions at this age. As the myotomes begin forming (approximately 5-8 days before hatching), the nerves invade the sensory epithelium, and the developing sensory cells contain dense bodies surrounded by clear, membrane-bound vesicles. Clear synapticlike vesicles are also found throughout the infranuclear region of the sensory cells. However, afferent fibers lack a postsynaptic density. Three to 6 days prior to hatching a cuticular plate begins forming under the ciliary bundles and support and peripheral cells begin to morphologically differentiate. Two to 4 days before hatching the cuticular plate is well formed, desmosomes are numerous, afferent synapses are complete, and the sensory cells are in the upper two-thirds of the epithelium. Seven to 10 days after hatching, sensory cells have efferent synapses and ganglion cells and nerves show a myelin coat. These results suggest that sensory cells begin their development prior to VIIIth nerve innervation, although the orientation and pattern development of these cells may be related to the formation of the cuticular plate, desmosomes, afferent innervation, and basal lamina formation.  相似文献   
19.
20.

Background and Aims

Parasitic plants obtain nutrients from their hosts through organs called haustoria. The hyaline body is a specialized parenchymatous tissue occupying the central parts of haustoria in many Orobanchaceae species. The structure and functions of hyaline bodies are poorly understood despite their apparent necessity for the proper functioning of haustoria. Reported here is a cell wall-focused immunohistochemical study of the hyaline bodies of three species from the ecologically important clade of rhinanthoid Orobanchaceae.

Methods

Haustoria collected from laboratory-grown and field-collected plants of Rhinanthus minor, Odontites vernus and Melampyrum pratense attached to various hosts were immunolabelled for cell wall matrix glycans and glycoproteins using specific monoclonal antibodies (mAbs).

Key Results

Hyaline body cell wall architecture differed from that of the surrounding parenchyma in all species investigated. Enrichment in arabinogalactan protein (AGP) epitopes labelled with mAbs LM2, JIM8, JIM13, JIM14 and CCRC-M7 was prominent and coincided with reduced labelling of de-esterified homogalacturonan with mAbs JIM5, LM18 and LM19. Furthermore, paramural bodies, intercellular deposits and globular ergastic bodies composed of pectins, xyloglucans, extensins and AGPs were common. In Rhinanthus they were particularly abundant in pairings with legume hosts. Hyaline body cells were not in direct contact with haustorial xylem, which was surrounded by a single layer of paratracheal parenchyma with thickened cell walls abutting the xylem.

Conclusions

The distinctive anatomy and cell wall architecture indicate hyaline body specialization. Altered proportions of AGPs and pectins may affect the mechanical properties of hyaline body cell walls. This and the association with a transfer-like type of paratracheal parenchyma suggest a role in nutrient translocation. Organelle-rich protoplasts and the presence of exceptionally profuse intra- and intercellular wall materials when attached to a nitrogen-fixing host suggest subsequent processing and transient storage of nutrients. AGPs might therefore be implicated in nutrient transfer and metabolism in haustoria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号