首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   500篇
  免费   29篇
  529篇
  2022年   4篇
  2020年   3篇
  2019年   7篇
  2018年   6篇
  2017年   7篇
  2016年   6篇
  2015年   24篇
  2014年   28篇
  2013年   20篇
  2012年   15篇
  2011年   29篇
  2010年   27篇
  2009年   17篇
  2008年   13篇
  2007年   22篇
  2006年   14篇
  2005年   20篇
  2004年   10篇
  2003年   7篇
  2002年   21篇
  2001年   17篇
  2000年   18篇
  1999年   12篇
  1998年   8篇
  1997年   3篇
  1996年   6篇
  1994年   4篇
  1993年   3篇
  1992年   9篇
  1991年   9篇
  1990年   7篇
  1989年   12篇
  1988年   9篇
  1987年   9篇
  1986年   8篇
  1985年   11篇
  1984年   3篇
  1983年   7篇
  1980年   4篇
  1979年   6篇
  1978年   3篇
  1977年   7篇
  1976年   3篇
  1975年   9篇
  1974年   4篇
  1973年   3篇
  1972年   8篇
  1971年   6篇
  1970年   10篇
  1969年   3篇
排序方式: 共有529条查询结果,搜索用时 15 毫秒
51.
52.
Six protein kinase C (PKC) genes are present in Drosophila, comprising two classical PKCs (PKC53E and eye-PKC), two novel PKCs (PKC98E and PKCdelta), an atypical PKC (DaPKC), and a PKC-related kinase. Loss of function alleles affecting DaPKC and eye-PKC are available and their mutant phenotypes have been characterized. DaPKC is essential for early embryonic development because it regulates cell polarity and asymmetric cell division. Eye-PKC plays a role in the regulation of visual signaling, a G-protein coupled phospholipase Cbeta-mediated cascade. Both eye-PKC and DaPKC are differentially localized through tethering to multimolecular complexes. DaPKC interacts with partitioning-defective 3 (Par-3) and Par-6 proteins, which contain PDZ (PSD95, DLG, ZO-1) domains. Similarly, eye-PKC is anchored to a PDZ domain containing scaffolding protein INAD. Characterization of these two PKCs in Drosophila revealed a universal mechanism by which PKC is tethered to specific protein complexes for participation in distinct signal transduction processes.  相似文献   
53.
Now it is quite usual to use real computers to simulte virtual cells. I suggest that real cells (e.g. cells cultured in vitro ) might be considered and used as molecular automata. As an imaginary experience, a molecular automata can be built, using real cells and a chemical inert molecule. I suggest that one could be able to test statistical properties of a 2D gas trapped in a box using this sort of automata. Moreover, I would conjecture that any possible algorithm can be implemented in such molecular automata.  相似文献   
54.
New asthma drugs acting on gene expression   总被引:5,自引:1,他引:4  
  相似文献   
55.
Sulfamide and sulfamic acid are the simplest compounds containing the SO2NH2 moiety, responsible for binding to the Zn(II) ion within carbonic anhydrase (CA, EC 4.2.1.1) active site, and thus acting as inhibitors of the many CA isozymes presently known. Here we describe two novel classes of CA inhibitors obtained by derivatizations of the lead molecules mentioned above. The new compounds, possessing the general formula RSO2NH-SO2X (X = OH, NH2), were obtained by reaction of sulfamide or sulfamic acid with alkyl/arylsulfonyl halides or arylsulfonyl isocyanates. A smaller series of derivatives has been obtained by reaction of aromatic aldehydes with sulfamide, leading to Schiff bases of the type ArCH = NSO2NH2. All the new compounds act as strong inhibitors of isozymes I, II and IV of carbonic anhydrase. Their mechanism of CA inhibition is also discussed based on electronic spectroscopic measurements on adducts with the Co(II)-substituted enzyme. These experiments led to the conclusion that the new inhibitors are directly coordinated (in a monodentate manner) to the metal ion within the enzyme active site, similarly to the classical inhibitors, the aromatic/heterocyclic sulfonamides.  相似文献   
56.
We report the characterization of two enzymes that catalyze NAD(+)-dependent 9-cis-retinol dehydrogenase activity in rat liver cystol. Alcohol dehydrogenase class I (ADHI) contributes > 80% of the NA D+-dependent 9-cis-retinol dehydrogenase activity recovered, whereas alcohol dehydrogenase class II (ADHII), not identified previously at the protein level, nor characterized enzymatically in rat, accounts for approximately 2% of the activity. Rat ADHII exhibits properties different from those described for human ADHII. Moreover, rat ADHII-catalyzed rates of ethanol dehydrogenation are markedly lower than octanol or retinoid dehydrogenation rates. Neither ethanol nor 4-methylpyrazole inhibits the 9-cis-retinol dehydrogenase activity of rat ADHII. We propose that ADHII represents the previously observed additional retinoid oxidation activity of rat liver cytosol which occurred in the presence of either ethanol or 4-methylpyrazole. We also show that human and rat ADHII differ considerably in enzymatic properties.  相似文献   
57.
The study has analysed the action of histamine in the rabbit venous system and evaluated its potential role in contraction during increased venous pressure. We have found that a great variety exists in histamine sensitivity and H(1) -histamine receptor expression in various types of rabbit veins. Veins of the extremities (saphenous vein, femoral vein, axillary vein) and abdomen (common iliac vein, inferior vena cava) responded to histamine by a prominent, concentration-dependent force generation, whereas great thoracic veins (subclavian vein, superior vena cavas, intrathoracic part of inferior vena cava) and a pelvic vein (external iliac vein) exhibited slight sensitivity to exogenous histamine. The lack of reactivity to histamine was not due to increased activity of nitric oxide synthase (NOS) or heme oxygenase-1. H(1) -histamine receptor expression of veins correlated well with the histamine-induced contractions. Voltage-dependent calcium channels mediated mainly the histamine-induced force generation of saphenous vein, whereas it did not act in the inferior vena cava. In contrast, the receptor-operated channels were not involved in this response in either vein. Tyrosine phosphorylation occurred markedly in response to histamine in the saphenous vein, but not in the inferior vena cava. Histamine induced a prominent ρ kinase activation in both vessels. Protein kinase C and mitogen-activated protein kinase (MAPK) were not implicated in the histamine-induced intracellular calcium sensitization. Importantly, transient clamping of the femoral vein in animals caused a short-term constriction, which was inhibited by H(1) -histamine receptor antagonist in vivo. Furthermore, a significantly greater histamine immunopositivity was detected in veins after stretching compared to the resting state. We conclude that histamine receptor density adapts to the actual requirements of the circulation, and histamine liberated by the venous wall during increased venous pressure contributes to the contraction of vessels, providing a force for the venous return.  相似文献   
58.
Characterizing the effects of force fields generated by cells on proliferation, migration and differentiation processes is challenging due to limited availability of nondestructive imaging modalities. Here, we integrate a new real‐time traction stress imaging modality, Hilbert phase dynamometry (HPD), with spatial light interference microscopy (SLIM) for simultaneous monitoring of cell growth during differentiation processes. HPD uses holographic principles to extract displacement fields from chemically patterned fluorescent grid on deformable substrates. This is converted into forces by solving an elasticity inverse problem. Since HPD uses the epi‐fluorescence channel of an inverted microscope, cellular behavior can be concurrently studied in transmission with SLIM. We studied the differentiation of mesenchymal stem cells (MSCs) and found that cells undergoing osteogenesis and adipogenesis exerted larger and more dynamic stresses than their precursors, with MSCs developing the smallest forces and growth rates. Thus, we develop a powerful means to study mechanotransduction during dynamic processes where the matrix provides context to guide cells toward a physiological or pathological outcome.   相似文献   
59.
60.
Protein homeostasis (proteostasis) is crucial for proper cellular function, including the production of peptides with biological functions through controlled proteolysis. Proteostasis has roles in maintenance of cellular functions and plant interactions with the environment under physiological conditions. Plant stress continues to reduce agricultural yields causing substantial economic losses; thus, it is critical to understand how plants perceive stress signals to elicit responses for survival. As previously shown in Arabidopsis thaliana, thimet oligopeptidases (TOPs) TOP1 (also referred to as organellar oligopeptidase) and TOP2 (also referred to as cytosolic oligopeptidase) are essential components in plant response to pathogens, but further characterization of TOPs and their peptide substrates is required to understand their contributions to stress perception and defense signaling. Herein, label-free peptidomics via liquid chromatography-tandem mass spectrometry was used to differentially quantify 1111 peptides, originating from 369 proteins, between the Arabidopsis Col-0 wild type and top1top2 knock-out mutant. This revealed 350 peptides as significantly more abundant in the mutant, representing accumulation of these potential TOP substrates. Ten direct substrates were validated using in vitro enzyme assays with recombinant TOPs and synthetic candidate peptides. These TOP substrates are derived from proteins involved in photosynthesis, glycolysis, protein folding, biogenesis, and antioxidant defense, implicating TOP involvement in processes aside from defense signaling. Sequence motif analysis revealed TOP cleavage preference for non-polar residues in the positions surrounding the cleavage site. Identification of these substrates provides a framework for TOP signaling networks, through which the interplay between proteolytic pathways and defense signaling can be further characterized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号