首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   39篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   3篇
  2017年   6篇
  2016年   4篇
  2015年   8篇
  2014年   17篇
  2013年   26篇
  2012年   27篇
  2011年   16篇
  2010年   12篇
  2009年   6篇
  2008年   6篇
  2007年   10篇
  2006年   15篇
  2005年   9篇
  2004年   8篇
  2003年   4篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1991年   18篇
  1990年   20篇
  1989年   14篇
  1988年   8篇
  1987年   11篇
  1986年   9篇
  1985年   7篇
  1984年   6篇
  1982年   2篇
  1980年   3篇
  1979年   2篇
  1978年   6篇
  1975年   5篇
  1974年   1篇
  1973年   4篇
  1972年   1篇
排序方式: 共有348条查询结果,搜索用时 15 毫秒
61.
Engineering/reprogramming differentiated adult somatic cells to gain the ability to differentiate into any type of cell lineage are called as induced pluripotent stem cells (iPSCs). Offering unlimited self-renewal and differentiation potential, these iPSC are aspired to meet the growing demands in the field of regenerative medicine, tissue engineering, disease modeling, nanotechnology, and drug discovery. Biomaterial fabrication with the rapid evolution of technology increased their versatility and utility in regenerative medicine and tissue engineering, revolutionizing the stem cell biology research with the property to guide the process of proliferation, differentiation, and morphogenesis. Combining traditional culture platforms of iPSC with biomaterials aids to overcome the limitations associated with derivation, proliferation, and maturation, thereby could improve the clinical translation of iPSC. The present review discusses in brief about the reprogramming techniques for the derivation iPSC and details on several biomaterial guided differentiation of iPSC to different cell types with specific relevance to tissue engineering/regenerative medicine.  相似文献   
62.
Mold spoilage is the main cause of substantial economic loss in cereals and might also cause public health problems due to the production of mycotoxins. The aim of this study was to separate and purify and to identify antifungal compounds of bacterium associated with novel entomopathogenic nematode and check the antifungal property of identified compound in particular food model systems. The antifungal compound was purified using silica gel column chromatography, TLC and HPLC and its structure was elucidated using NMR (1H NMR, 13C NMR, 1H–1H COSY, 1H–13C HMBC), HRMS and Marfey's method. Based on the spectral data, the active compounds were identified as diketopiperazine [cyclo(l-Pro-d-Leu)]. The antifungal activity of cyclo(l-Pro-d-Leu) was studied by MIC and paper disk assay against Aspergillus flavus MTCC 277 and Aspergillus niger MTCC 282 and best MIC value of 8 μg/ml was recorded against A. flavus. Cyclo(l-Pro-d-Leu) strongly inhibit mycelia growth of fungus and thereby affecting aflatoxin production. To investigate the potential application of the cyclo(l-Pro-d-Leu) and to eliminate fungal spoilage in food and feed, soybean and peanut were used as models. White mycelia and dark/pale green spores of A. flavus were observed in the control soybeans after 2-day incubation. However the fungal growth was not observed in soybeans treated with cyclo(l-Pro-d-Leu). Almost the same result was observed for peanuts treated with cyclo(l-Pro-d-Leu) for A. niger. The cyclo(l-Pro-d-Leu) was nontoxic to two normal human cell lines (FS normal fibroblast and L231 lung epithelial) up to 200 μg/ml. Thus the diketopiperazine derivative identified in the study may be a promising alternative to chemical preservatives as a potential biopreservative which prevent fungal growth and mycotoxin formation in food and feed.  相似文献   
63.
64.
65.
66.
As detailed in a companion paper (Berk, D., and E. Evans. 1991. Biophys. J. 59:861-872), a method was developed to quantitate the strength of adhesion between agglutinin-bonded membranes without ambiguity due to mechanical compliance of the cell body. The experimental method and analysis were formulated around controlled assembly and detachment of a pair of macroscopically smooth red blood cell surfaces. The approach provides precise measurement of the membrane tension applied at the perimeter of an adhesive contact and the contact angle theta c between membrane surfaces which defines the mechanical leverage factor (1-cos theta c) important in the definition of the work to separate a unit area of contact. Here, the method was applied to adhesion and detachment of red cells bound together by different monoclonal antibodies to red cell membrane glycophorin and the snail-helix pomatia-lectin. For these tests, one of the two red cells was chemically prefixed in the form of a smooth sphere then equilibrated with the agglutinin before the adhesion-detachment procedure. The other cell was not exposed to the agglutinin until it was forced into contact with the rigid cell surface by mechanical impingement. Large regions of agglutinin bonding were produced by impingement but no spontaneous spreading was observed beyond the forced contact. Measurements of suction force to detach the deformable cell yielded consistent behavior for all of the agglutinins: i.e., the strength of adhesion increased progressively with reduction in contact diameter throughout detachment. This tension-contact diameter behavior was not altered over a ten-fold range of separation rates. In special cases, contacts separated smoothly after critical tensions were reached; these were the highest values attained for tension. Based on measurements reported in another paper (Evans et al. 1991. Biophys. J. 59:838-848) of the forces required to rupture molecular-point attachments, the density of cross-bridges was estimated with the assumption that the tension was proportional to the discrete rupture force x the number of attachments per unit length. These estimates showed that only a small fraction of agglutinin formed cross-bridges at initial assembly and increased progressively with separation. When critical tension levels were reached, it appeared that nearly all local agglutinin was involved as cross-bridges. Because one cell surface was chemically fixed, receptor accumulation was unlikely; thus, microscopic "roughness" and steric repulsion probably modulated formation of cross-bridges on initial contact.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
67.
68.
Structural protein 4.1, first identified as a crucial 80-kD protein in the mature red cell membrane skeleton, is now known to be a diverse family of protein isoforms generated by complex alternative mRNA splicing, variable usage of translation initiation sites, and posttranslational modification. Protein 4.1 epitopes are detected at multiple intracellular sites in nucleated mammalian cells. We report here investigations of protein 4.1 in the nucleus. Reconstructions of optical sections of human diploid fibroblast nuclei using antibodies specific for 80-kD red cell 4.1 and for 4.1 peptides showed 4.1 immunofluorescent signals were intranuclear and distributed throughout the volume of the nucleus. After sequential extractions of cells in situ, 4.1 epitopes were detected in nuclear matrix both by immunofluorescence light microscopy and resinless section immunoelectron microscopy. Western blot analysis of fibroblast nuclear matrix protein fractions, isolated under identical extraction conditions as those for microscopy, revealed several polypeptide bands reactive to multiple 4.1 antibodies against different domains. Epitope-tagged protein 4.1 was detected in fibroblast nuclei after transient transfections using a construct encoding red cell 80-kD 4.1 fused to an epitope tag. Endogenous protein 4.1 epitopes were detected throughout the cell cycle but underwent dynamic spatial rearrangements during cell division. Protein 4.1 was observed in nucleoplasm and centrosomes at interphase, in the mitotic spindle during mitosis, in perichromatin during telophase, as well as in the midbody during cytokinesis. These results suggest that multiple protein 4.1 isoforms may contribute significantly to nuclear architecture and ultimately to nuclear function.  相似文献   
69.
Several human diseases have been mapped to Xp22.3 on the distal short arm of the human X chromosome, and many genes in this area have been found to be expressed from the inactive X chromosome. To facilitate physical mapping and characterization of this interesting region, we have constructed a battery of radiation hybrids containing human X chromosomal fragments, and isolated two hybrid clones with overlapping fragments of Xp22.3. Alu-PCR on these hybrids and identification of sequences common to both hybrids allowed the isolation of six sequence-tagged sites (STSs) from Xp22.3. Five of the STSs were mapped to individual YACs comprising a recently constructed contig of this region. These novel STSs are useful markers for further physical characterization of this part of the genome. Received: 4 May 1995 / Revised: 27 September 1995  相似文献   
70.
Prenyltransferases are a group of enzymes involved in the biosynthesis of both sterol and nonsterol isoprene compounds. Somatic cell hybrid studies and in situ hybridization show that the human genome contains five distinct loci that hybridize to the cDNA for the enzyme farnesyl pyrophosphate synthetase (FPS), a prenyltransferase that catalyzes the synthesis of an intermediate common to both the sterol and the nonsterol branches of the isoprene biosynthetic pathway. The loci identified in this report may correspond to unique prenyltransferase genes related to FPS or to pseudogenes. The loci mapped have been identified as farnesyl pyrophosphate synthetase-"like"-1 (FPSL-1) on chromosome 1q24-31, FPSL-2 on chromosome 7, FPSL-3 on chromosome 14, FPSL-4 on chromosome 15q14-q21, and FPSL-5 on chromosome Xq21-22. Multiple copies of sequences similar to those of FPS are also present in both the mouse and the rat.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号