首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   531篇
  免费   28篇
  2023年   3篇
  2022年   10篇
  2021年   20篇
  2020年   10篇
  2019年   16篇
  2018年   20篇
  2017年   23篇
  2016年   22篇
  2015年   27篇
  2014年   33篇
  2013年   34篇
  2012年   61篇
  2011年   38篇
  2010年   17篇
  2009年   8篇
  2008年   20篇
  2007年   24篇
  2006年   26篇
  2005年   23篇
  2004年   21篇
  2003年   5篇
  2002年   20篇
  2001年   6篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1979年   2篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
61.
62.
The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor that binds a variety of structurally and functionally unrelated ligands, including advanced glycation endproducts (AGEs), amyloid fibrils, amphoterin, and members of the S100 family of proteins. The receptor has been implicated in the pathology of diabetes as well as in inflammatory processes and tumor cell metastasis. For the present study, the extracellular region of RAGE (exRAGE) was expressed as a soluble, C-terminal hexahistidine-tagged fusion protein in the periplasmic space of Escherichia coli. Proper processing and folding of the purified protein, predicted to contain three immunoglobulin-type domains, was supported by the results of electrospray mass spectroscopy and circular dichroism experiments. Sedimentation velocity experiments showed that exRAGE was primarily monomeric in solution. Binding to several RAGE ligands, including AGE-BSA, immunoglobulin light chain amyloid fibrils, and glycosaminoglycans, was demonstrated using pull-down, dot-blot, or enzyme-linked microplate assays. Using surface plasmon resonance, the interaction of exRAGE with AGE-BSA was shown to fit a two-site model, with KD values of 88 nM and 1.4 microM. The E. coli-derived exRAGE did not bind the advanced glycation endproduct Nepsilon-(carboxymethyl)lysine, as reported for the cellular receptor, and the possible role of RAGE glycosylation in recognition of this ligand is discussed. This new RAGE construct will facilitate detailed studies of RAGE-ligand interactions and provides a platform for preparation of site-directed mutants for future structure/function studies.  相似文献   
63.
A nanocompartment system composed of an ABA triblock copolymer, where A is poly(dimethylsiloxane) and B is poly(2-methyloxazoline), has been developed for selective recovery and detection of DNA. Translocation of TAMRA-labeled complementary primers into the nanocompartment system has been achieved through two deletion mutants (FhuA Delta1-129; FhuA Delta1-160) of the channel protein FhuA. Translocation was monitored by fluorescence resonance energy transfer through hybridization of the TAMRA-labeled primer to the complementary sequence of a nanophosphor-DNA-conjugate, which reduces its half-life (FhuA Delta1-129, 16.0% reduced; FhuA Delta1-160, 39.0% reduced).  相似文献   
64.
Integrins are cell adhesion molecules that mediate numerous developmental processes in addition to a variety of acute physiological events. Two reports implicate a Drosophila beta integrin, betaPS, in olfactory behavior. To further investigate the role of integrins in Drosophila olfaction, we used Gal4-driven expression of RNA interference (RNAi) transgenes to knock down expression of myospheroid (mys), the gene that encodes betaPS. Expression of mys-RNAi transgenes in the wing reduced betaPS immunostaining and produced morphological defects associated with loss-of-function mutations in mys, demonstrating that this strategy knocked down mys function. Expression of mys-RNAi transgenes in the antennae, antennal lobes, and mushroom bodies via two Gal4 lines, H24 and MT14, disrupted olfactory behavior but did not alter locomotor abilities or central nervous system structure. Olfactory behavior was normal in flies that expressed mys-RNAi transgenes via other Gal4 lines that specifically targeted the antennae, the projection neurons, the mushroom bodies, bitter and sweet gustatory neurons, or Pox neuro neurons. Our studies confirm that mys is important for the development or function of the Drosophila olfactory system. Additionally, our studies demonstrate that mys is required for normal behavioral responses to both aversive and attractive odorants. Our results are consistent with a model in which betaPS mediates events within the antennal lobes that influence odorant sensitivity.  相似文献   
65.
A bacterial strain, PNS-1, isolated from activated sludge, could utilize sulphanilic acid (4-ABS) as the sole organic carbon and energy source under aerobic conditions. Determination and comparison of 16S r DNA sequences showed that the strain PNS-1 is closely related to the species of Agrobacterium genus. Growth on 4-ABS was accompanied with ammonia and sulfate release. TOC results showed complete mineralization of sulphanilic acid. This strain was highly specific for 4-ABS as none of the sulphonated aromatics used in the present study including other ABS isomers were utilized. Strain PNS-1 could, however, utilize all the tested monocyclic aromatic compounds devoid of a sulfonate group. No intermediates could be detected either in the growth phase or with dense cell suspensions. Presence of chloramphenicol completely inhibited 4-ABS degradation by cells pregrown on succinate, indicating that degradation enzymes are inducible. No plasmid could be detected in the Agrobacterium sp. Strain PNS-1 suggesting that 4-ABS degradative genes may be chromosomal encoded.  相似文献   
66.
Neurite outgrowth is essential for the communication of the nervous system. The rat Pheochromocytoma (PC12) cells are commonly used in the neuronal cell study. It is well known that exogenous stimuli such as Nerve Growth Factor (NGF) induce neurite outgrowth. In the present study it has been investigated whether or not the conditioned medium from human neuroblastoma cell line (IMR-32) and human glioblastoma cell line (U87MG) may augment neurite outgrowth in PC12 cells. PC12 were cultured with and without conditioned media of IMR-32 and U87MG. The result showed that both the conditioned media induce neurite outgrowth within 48 hr and stops further proliferation of PC12 cells. However no outgrowth was noted in PC12 cells incubated without conditioned medium. In conclusion, it is shown that both the conditioned media (IMR-32 and U87MG) have the potential to induce the neurite outgrowth in the PC12 cells.  相似文献   
67.
PELP1 (proline-, glutamic acid-, and leucine-rich protein-1) (also known as the modulator of nongenomic activity of estrogen receptor) plays a role in genomic functions of the estrogen receptor via histone interactions and in nongenomic functions via its influence on the MAPK-Src pathway. However, recent studies have shown that differential compartmentalization of PELP1 could play a crucial role in modulating the status of nongenomic signaling by using molecular mechanisms that remain poorly understood. Hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) is an early endosomal protein that plays a role in regulating the trafficking of growth factor-receptor complexes through early endosomes. By using a yeast two-hybrid screen, we identified HRS as a novel PELP1-binding protein providing evidence of a physiologic interaction between HRS and PELP1. The noted HRS-PELP1 interaction was accompanied by inhibition of the basal coactivator function of PELP1 upon estrogen receptor transactivation. HRS was found to sequester PELP1 in the cytoplasm, leading to the activation of MAPK in a manner that is dependent on the epidermal growth factor receptor but independent of the estrogen receptor, Shc, and Src. In addition, stimulation of MAPK and the subsequent activation of its downstream effector pathway, Elk-1, by HRS or PELP1 were found to depend on the presence of endogenous PELP1 or HRS. Furthermore, HRS was overexpressed and correlated well with the cytoplasmic PELP1, increased MAPK, and EGFR status in breast tumors. These findings highlight a novel role of HRS in up-regulating MAPK, presumably involving interaction with PELP1.  相似文献   
68.
69.
70.
Activation of PI3-K-AKT and ERK pathways is a complication of mTOR inhibitor therapy. Newer mTOR inhibitors (like pp242) can overcome feedback activation of AKT in multiple myeloma (MM) cells. We, thus, studied if feedback activation of ERK is still a complication of therapy with such drugs in this tumor model. PP242 induced ERK activation in MM cell lines as well as primary cells. Surprisingly, equimolar concentrations of rapamycin were relatively ineffective at ERK activation. Activation was not correlated with P70S6kinase inhibition nor was it prevented by PI3-kinase inhibition. ERK activation was prevented by MEK inhibitors and was associated with concurrent stimulation of RAF kinase activity but not RAS activation. RAF activation correlated with decreased phosphorylation of RAF at Ser-289, Ser-296, and Ser-301 inhibitory residues. Knockdown studies confirmed TORC1 inhibition was the key proximal event that resulted in ERK activation. Furthermore, ectopic expression of eIF-4E blunted pp242-induced ERK phosphorylation. Since pp242 was more potent than rapamycin in causing sequestering of eIF-4E, a TORC1/4E-BP1/eIF-4E-mediated mechanism of ERK activation could explain the greater effectiveness of pp242. Use of MEK inhibitors confirmed ERK activation served as a mechanism of resistance to the lethal effects of pp242. Thus, although active site mTOR inhibitors overcome AKT activation often seen with rapalog therapy, feedback ERK activation is still a problem of resistance, is more severe than that seen with use of first generation rapalogs and is mediated by a TORC1- and eIF-4E-dependent mechanism ultimately signaling to RAF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号