首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   536篇
  免费   28篇
  2023年   3篇
  2022年   15篇
  2021年   20篇
  2020年   10篇
  2019年   16篇
  2018年   20篇
  2017年   23篇
  2016年   22篇
  2015年   27篇
  2014年   33篇
  2013年   34篇
  2012年   61篇
  2011年   38篇
  2010年   17篇
  2009年   8篇
  2008年   20篇
  2007年   24篇
  2006年   26篇
  2005年   23篇
  2004年   21篇
  2003年   5篇
  2002年   20篇
  2001年   6篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1979年   2篇
  1977年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有564条查询结果,搜索用时 15 毫秒
11.
Summary A salicylate-hydroxylase-producing strain of Pseudomonas putida with an unusual capability to grow at toxic levels of salicylate up to 10 g l–1 has been isolated. It grew well under continuous culture conditions, with optimum growth at pH 6.5 and a temperature of 25° C. The use of an ammonium salt as a nitrogen source, instead of nitrate, resulted in a 30–40% increase in its biomass yield coefficient. Optimum growth under continuous culture conditions was achieved using 4 g l–1 salicylate at 25° C, pH 6.5 and 0.2 h–1 dilution rate. High salicylate hydroxylase enzyme activity [236 units (U) l–1] and productivity (424.8 U h–1) were obtained at a dilution rate of 0.45 h–1 using a mineral medium containing 4 g l–1 of salicylate. Operating under continuous culture conditions with oxygen limitation and a slight accumulation of residual salicylate (0.2 g l–1) resulted in a decrease in culture performance and enzyme productivity. Correspondence to: R. Marchant  相似文献   
12.
To study the effect of regenerative response of the liver following partial hepatectomy on the synthesis of major plasma proteins (secretory proteins), we have determined the sequence contents and the distribution of albumin and fibrinogen polypeptide mRNAs in rat liver at intervals after partial hepatectomy and sham operation. Using a quantitative technique for the isolation of polyribosomes, we demonstrated that the distribution of RNA between free and membrane-bound polyribosomal fraction was unchanged in these experiments. There was no shift in the polyribosomal population to favor free polyribosomes after partial hepatectomy. However, there was a dramatic increase (5–6-fold) of the fibrinogen polypeptide mRNA concentration during the first 24 h after resection. In contrast, the albumin mRNA concentration decreased (2–3-fold). There were no α-fetoprotein mRNA sequences detectable in any liver RNA fraction in these experimental animals. In sham-operated rats with intact livers, similar changes of fibrinogen polypeptide and albumin mRNA concentrations as described in regenerating liver after partial hepatectomy, were observed. These results suggest that albumin and fibrinogen synthesis after partial hepatectomy is reciprocally regulated at the mRNA level and represents a nonspecific acute phase response to surgical trauma.  相似文献   
13.
Microbial plant interaction plays a major role in the sustainability of plants. The understanding of phytomicrobiome interactions enables the gene-editing tools for the construction of the microbial consortia. In this interaction, microbes share several common secondary metabolites and terpenoid metabolic pathways with their host plants that ensure a direct connection between the microbiome and associated plant metabolome. In this way, the CRISPR-mediated gene-editing tool provides an attractive approach to accomplish the creation of microbial consortia. On the other hand, the genetic manipulation of the host plant with the help of CRISPR-Cas9 can facilitate the characterization and identification of the genetic determinants. It leads to the enhancement of microbial capacity for more trait improvement. Many plant characteristics like phytovolatilization, phytoextraction, phytodesalination and phytodegradation are targeted by these approaches. Alternatively, chemical communications by PGPB are accomplished by the exchange of different signal molecules. For example, quorum-sensing is the way of the cell to cell communication in bacteria that lead to the detection of metabolites produced by pathogens during adverse conditions and also helpful in devising some tactics towards understanding plant immunity. Along with quorum-sensing, different volatile organic compounds and N-acyl homoserine lactones play a significant role in cell to cell communication by microbe to plant and among the plants respectively. Therefore, it is necessary to get details of all the significant approaches that are useful in exploring cell to cell communications. In this review, we have described gene-editing tools and the cell to cell communication process by quorum-sensing based signaling. These signaling processes via CRISPR- Cas9 mediated gene editing can improve the microbe-plant community in adverse climatic conditions.  相似文献   
14.
Expression of the catabolic network in Escherichia coli is predominantly regulated, via oxygen availability, by the two-component system ArcBA. It has been shown that the kinase activity of ArcB is controlled by the redox state of two critical pairs of cysteines in dimers of the ArcB sensory kinase. Among the cellular components that control the redox state of these cysteines of ArcB are the quinones from the cytoplasmic membrane of the cell, which function in ‘respiratory’ electron transfer. This study is an effort to understand how the redox state of the quinone pool(s) is sensed by the cell via the ArcB kinase. We report the relationship between growth, quinone content, ubiquinone redox state, the level of ArcA phosphorylation, and the level of ArcA-dependent gene expression, in a number of mutants of E. coli with specific alterations in their set of quinones, under a range of physiological conditions. Our results provide experimental evidence for a previously formulated hypothesis that not only ubiquinone, but also demethylmenaquinone, can inactivate kinase activity of ArcB. Also, in a mutant strain that only contains demethylmenaquinone, the extent of ArcA phosphorylation can be modulated by the oxygen supply rate, which shows that demethylmenaquinone can also inactivate ArcB in its oxidized form. Furthermore, in batch cultures of a strain that contains ubiquinone as its only quinone species, we observed that the ArcA phosphorylation level closely followed the redox state of the ubiquinone/ubiquinol pool, much more strictly than it does in the wild type strain. Therefore, at low rates of oxygen supply in the wild type strain, the activity of ArcB may be inhibited by demethylmenaquinone, in spite of the fact that the ubiquinones are present in the ubiquinol form.  相似文献   
15.
A method is described for construction of an amperometric triglyceride (TG) biosensor based on covalent co-immobilization of lipase, glycerol kinase and glycerol-3-phosphate oxidase onto gold polypyrrole nanocomposite decorated poly indole-5-carboxylic acid electrodeposited on the surface of a gold electrode. The enzyme electrode was characterized by transmission electron microscopy, scanning electron microscopy, electrochemical impedance studies, Fourier transform infrared spectroscopy and cyclic voltammetry. Biosensor showed optimum response within 4 s at pH 6.5 and 35 °C, when polarized at +0.1 V against Ag/AgCl. There was a linear relationship between sensor response and triolein concentration in the range 50–700 mg/dl. Biosensor was employed for determination of TG in serum. Detection limit of the biosensor was 20 mg/dl. Biosensor was evaluated with 91–95 % recovery of added triolein in sera and 4.14 and 5.85 % within and between batch coefficients of variation, respectively. There was a good correlation (r = 0.99) between sera TG values by standard method (Enzymic colorimetric) and the present method. The biosensor was unaffected by a number of serum substances at their physiological concentration. Biosensor lost 50 % of its initial activity after its 100 uses over 7 months, when stored at 4 °C.  相似文献   
16.
Analysis of any mammalian plasma proteome is a challenge, particularly by mass spectrometry, due to the presence of albumin and other abundant proteins which can mask the detection of low abundant proteins. As detection of human plasma proteins is valuable in diagnostics, exploring various workflows with minimal fractionation prior to mass spectral analysis, is required in order to study population diversity involving analysis in a large cohort of samples. Here, we used ‘reference plasma sample’, a pool of plasma from 10 healthy individuals from Indian population in the age group of 25–60 yrs including 5 males and 5 females. The 14 abundant proteins were immunodepleted from plasma and then evaluated by three different workflows for proteome analysis using a nanoflow reverse phase liquid chromatography system coupled to a LTQ Orbitrap Velos mass spectrometer. The analysis of reference plasma sample a) without prefractionation, b) after prefractionation at peptide level by strong cation exchange chromatography and c) after prefractionation at protein level by sodium dodecyl sulfate polyacrylamide gel electrophoresis, led to the identification of 194, 251 and 342 proteins respectively. Together, a comprehensive dataset of 517 unique proteins was achieved from all the three workflows, including 271 proteins with high confidence identified by≥2 unique peptides in any of the workflows or identified by single peptide in any of the two workflows. A total of 70 proteins were common in all the three workflows. Some of the proteins were unique to our study and could be specific to Indian population. The high-confidence dataset obtained from our study may be useful for studying the population diversity, in discovery and validation process for biomarker identification.  相似文献   
17.
A systematic quantum mechanical study of the possible conformations and vibrational spectra of 2-amino 6-bromo 3-formylchromone has been reported. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by Hartree–Fock and density functional theory employing Becke's three-parameter (local, non-local and HF) hybrid exchange functionals with Lee–Yang–Parr co-relational (B3LYP) functionals using 6-311++G(d,p) basis set with complete relaxation in the potential energy surface. The calculated wavenumbers after proper scaling show a very good agreement with the observed values. The electrostatic potential mapped onto isodensity surface has been obtained. The natural bond orbital analysis has been carried out in order to study the intra-molecular bonding, interactions among bonds and delocalisation of unpaired electrons. The highest occupied molecular orbital–lowest unoccupied molecular orbital studies have been conducted in order to determine the way the molecule interacts with other species.  相似文献   
18.
Serpins such as antithrombin, heparin cofactor II, plasminogen activator inhibitor, antitrypsin, antichymotrypsin, and neuroserpin are involved in important biological processes by inhibiting specific serine proteases. Initially, the protease recognizes the mobile reactive loop of the serpin eliciting conformational changes, where the cleaved loop together with the protease inserts into β-sheet A, translocating the protease to the opposite side of inhibitor leading to its inactivation. Serpin interaction with proteases is governed mainly by the reactive center loop residues (RCL). However, in some inhibitory serpins, exosite residues apart from RCL have been shown to confer protease specificity. Further, this forms the basis of multi-specificity of some serpins, but the residues and their dimension at interface in serpin-protease complexes remain elusive. Here, we present a comprehensive structural analysis of the serpin-protease interfaces using bio COmplexes COntact MAPS (COCOMAPS), PRotein Interface Conservation and Energetics (PRICE), and ProFace programs. We have carried out interface, burial, and evolutionary analysis of different serpin-protease complexes. Among the studied complexes, non-inhibitory serpins exhibit larger interface region with greater number of residue involvement as compared to the inhibitory serpins. On comparing the multi-specific serpins (antithrombin and antitrypsin), a difference in the interface area and residue number was observed, suggestive of a differential mechanism of action of these serpins in regulating their different target proteases. Further, detailed study of these multi-specific serpins listed few essential residues (common in all the complexes) and certain specificity (unique to each complex) determining residues at their interfaces. Structural mapping of interface residues suggested that individual patches with evolutionary conserved residues in specific serpins determine their specificity towards a particular protease.  相似文献   
19.
Immunoaffinity separation of large multivalent species such as viruses is limited by the stringent elution conditions necessary to overcome their strong and highly avid interaction with immobilized affinity ligands on the capture surface. Here we present an alternate strategy that harnesses the avidity effect to overcome this limitation. Red clover necrotic mosaic virus (RCNMV), a plant virus relevant to drug delivery applications, was chosen as a model target for this study. An RCNMV binding protein (RBP) with modest binding affinity (KD ~100 nM) was generated through mutagenesis of the Sso7d protein from Sulfolobus solfataricus and used as the affinity ligand. In our separation scheme, RCNMV is captured by a highly avid interaction with RBP immobilized on a nickel surface through a hexahistidine (6xHis) tag. Subsequently, disruption of the multivalent interaction and release of RCNMV is achieved by elution of RBP from the nickel surface. Finally, RCNMV is separated from RBP by exploiting the large difference in their molecular weights (~8 MDa vs. ~10 kDa). Our strategy not only eliminates the need for harsh elution conditions, but also bypasses chemical conjugation of the affinity ligand to the capture surface. Stable non‐antibody affinity ligands to a wide spectrum of targets can be generated through mutagenesis of Sso7d and other hyperthermophilic proteins. Therefore, our approach may be broadly relevant to cases where capture of large multivalent species from complex mixtures and subsequent release without the use of harsh elution conditions is necessary. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   
20.
Infected hosts differ in their responses to pathogens; some hosts are resilient and recover their original health, whereas others follow a divergent path and die. To quantitate these differences, we propose mapping the routes infected individuals take through “disease space.” We find that when plotting physiological parameters against each other, many pairs have hysteretic relationships that identify the current location of the host and predict the future route of the infection. These maps can readily be constructed from experimental longitudinal data, and we provide two methods to generate the maps from the cross-sectional data that is commonly gathered in field trials. We hypothesize that resilient hosts tend to take small loops through disease space, whereas nonresilient individuals take large loops. We support this hypothesis with experimental data in mice infected with Plasmodium chabaudi, finding that dying mice trace a large arc in red blood cells (RBCs) by reticulocyte space as compared to surviving mice. We find that human malaria patients who are heterozygous for sickle cell hemoglobin occupy a small area of RBCs by reticulocyte space, suggesting this approach can be used to distinguish resilience in human populations. This technique should be broadly useful in describing the in-host dynamics of infections in both model hosts and patients at both population and individual levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号