首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   96篇
  国内免费   1篇
  673篇
  2022年   5篇
  2021年   9篇
  2020年   3篇
  2018年   6篇
  2017年   5篇
  2016年   10篇
  2015年   19篇
  2014年   32篇
  2013年   34篇
  2012年   34篇
  2011年   52篇
  2010年   31篇
  2009年   26篇
  2008年   26篇
  2007年   46篇
  2006年   27篇
  2005年   39篇
  2004年   29篇
  2003年   23篇
  2002年   14篇
  2001年   16篇
  2000年   25篇
  1999年   17篇
  1998年   13篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   7篇
  1992年   7篇
  1991年   11篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1983年   2篇
  1982年   4篇
  1981年   8篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1975年   7篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
排序方式: 共有673条查询结果,搜索用时 15 毫秒
621.
622.
Senescence-acceleration-prone mice (SAMP8) provide a model to study the influence of early postnatal sound exposure upon the aging auditory midbrain. SAMP8 were exposed to a 9-kHz monotone of either 53- or 65-dB sound pressure level during the first 30 postnatal days, the neurons in the auditory midbrain responding selectively to 9 kHz were localized by c-fos immunohistochemistry and the following parameters were compared to control SAMP8 not exposed to sound: mortality after sound exposure, dendritic spine density, and quantitative neurochemical alterations in this 9-kHz isofrequency lamina. For morphometric analysis, animals were examined at 1, 4, and 8 months of age. Serial sections of the inferior colliculus were Golgi impregnated or stained immunohistochemically for the expression of 1 subunit of NMDA receptor or GABA. Mortality after exposure to 53 dB was the same as in controls, but was markedly increased from 7 months of age onward after postnatal exposure to 65 dB. No gross morphological alterations were observed in the auditory midbrain after sound exposure. However, sound exposure to 53 or 65 dB significantly reduced dendritic spine density by 11% at 4 months or by 11–17% both at 1 and 4 months of age, respectively. The effect of sound exposure upon neurons expressing the NMDA1 subunit was dose-dependent. Increasing with age until 4 months in control mice and remaining essentially stable thereafter, the percentage of NMDA1-immunoreactive neurons was significantly elevated by 40–66% in 1- and 8-month-old SAMP8 exposed to 53 dB, whereas no significant effect of 65 dB was apparent. The proportion of GABAergic cells declined with age in controls. It was significantly decreased at 1 month after 53 and 65 dB sound exposure. In contrast, it was elevated at later stages, being significantly increased at 4 months after exposure to 53 dB and at 8 months after exposure to 65 dB. The total cell number in the 9-kHz isofrequency lamina of SAMP8 decreased with age, but was not affected by exposure to either 53 or 65 dB. The present results indicate that early postnatal exposure to a monotone of mild intensity has long-term effects upon the aging auditory brain stem. Some of the changes induced by sound exposure, e.g., decline in spine density, are interpreted as accelerations of the normal aging process, whereas other effects, e.g., increased NMDA1 expression after 53 dB and elevated GABA expression after both 53 and 65 dB, are not merely explicable by accelerated aging.  相似文献   
623.
Genomewide association studies may offer the best promise for genetic mapping of complex traits. Such studies in outbred populations require very densely spaced single-nucleotide polymorphisms. In recently founded population isolates, however, extensive linkage disequilibrium (LD) may make these studies feasible with currently available sets of short tandem repeat markers, spaced at intervals as large as a few centimorgans. We report the results of a genomewide association study of severe bipolar disorder (BP-I), using patients from the isolated population of the central valley of Costa Rica. We observed LD with BP-I on several chromosomes; the most striking results were in proximal 8p, a region that has previously shown linkage to schizophrenia. This region could be important for severe psychiatric disorders, rather than for a specific phenotype.  相似文献   
624.
Yeast phosphatidylinositol transfer protein (Sec14p) coordinates lipid metabolism with protein-trafficking events. This essential Sec14p requirement for Golgi function is bypassed by mutations in any one of seven genes that control phosphatidylcholine or phosphoinositide metabolism. In addition to these "bypass Sec14p" mutations, Sec14p-independent Golgi function requires phospholipase D activity. The identities of lipids that mediate Sec14p-dependent Golgi function, and the identity of the proteins that respond to Sec14p-mediated regulation of lipid metabolism, remain elusive. We now report genetic evidence to suggest that two ADP ribosylation factor-GTPase-activating proteins (ARFGAPs), Gcs1p and Age2p, may represent these lipid-responsive elements, and that Gcs1p/Age2p act downstream of Sec14p and phospholipase D in both Sec14p-dependent and Sec14p-independent pathways for yeast Golgi function. In support, biochemical data indicate that Gcs1p and Age2p ARFGAP activities are both modulated by lipids implicated in regulation of Sec14p pathway function. These results suggest ARFGAPs are stimulatory factors required for regulation of Golgi function by the Sec14p pathway, and that Sec14p-mediated regulation of lipid metabolism interfaces with the activity of proteins involved in control of the ARF cycle.  相似文献   
625.
626.
Eight chemical structures not previously reported to possess antifilarial activity have been identified. A total of 79 compounds with anticancer properties were evaluated for possible macrofilaricidal activity against Brugia pahangi and Acanthocheilonema viteae transplanted into male Mongolian jirds (Meriones unguiculatus). All eight active compounds were suppressive for the onchocerciasis type (Acanthocheilonema viteae) of the disease. None was macrofilaricidal for the lymphatic form (Brugia pahangi). These new structures may represent a nucleus around which effective drugs can be synthesized.  相似文献   
627.
628.
In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic β cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.Key words: Drosophila melanogaster, insulin-producing cells (IPCs), drosophila insulin-like peptides (DILPs), type 2 diabetes, oral glucose tolerance test (OGTT), insulin sensitivity, energy metabolism, life span  相似文献   
629.
630.
It has been shown that melatonin regulates uterine function. Our previous studies have demonstrated the presence of melatonin receptors in the rat uterine endometrium, indicating that melatonin may act directly on the uterus. In the present study, the histological localization of the rat uterine melatonin binding was revealed by autoradiography and the molecular subtyping was studied by in situ hybridization in the stromal cells. The signal transduction process and effects of melatonin on stromal cell proliferation was also investigated. Our autoradiograms showed that 2[(125)I]iodomelatonin binding sites were localized in the antimesometrial endometrial stroma. In situ hybridization with specific mt(1) receptor cDNA probe in the primary culture of antimesometrial stromal cells demonstrated the expression of mt(1) receptor mRNAs. Melatonin dose-dependently inhibited forskolin-stimulated cAMP accumulation, which was reversed by pertussis toxin. This indicates that the rat uterine melatonin receptors are negatively coupled to adenylate cyclase via pertussis toxin sensitive G(i) protein. Melatonin also inhibited the incorporation of [(3)H]thymidine in the rat uterine antimesometrial stromal cells, showing that melatonin has an anti-proliferative effect on the uterus. Our results suggest that melatonin may act directly on the mt(1) melatonin receptors in the rat uterine antimesometrial stromal cells to inhibit their proliferation. Its action may be mediated through a pertussis toxin-sensitive adenylate cyclase coupled G(i)-protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号