首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   38篇
  658篇
  2023年   9篇
  2022年   24篇
  2021年   31篇
  2020年   8篇
  2019年   16篇
  2018年   24篇
  2017年   28篇
  2016年   32篇
  2015年   31篇
  2014年   42篇
  2013年   53篇
  2012年   49篇
  2011年   75篇
  2010年   36篇
  2009年   31篇
  2008年   27篇
  2007年   23篇
  2006年   21篇
  2005年   20篇
  2004年   17篇
  2003年   7篇
  2002年   10篇
  2000年   5篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1971年   1篇
  1962年   1篇
排序方式: 共有658条查询结果,搜索用时 15 毫秒
61.
62.
In this study, an amidohydrolase activity of amidase in whole cells of Rhodococcus sp. MTB5 has been used for the biotransformation of aromatic, monoheterocyclic and diheterocyclic amides to corresponding carboxylic acids. Benzoic acid, nicotinic acid and pyrazinoic acid are carboxylic acids which have wide industrial applications. The amidase of this strain is found to be inducible in nature. The biocatalytic conditions for amidase present in the whole cells of MTB5 were optimized against benzamide. The enzyme exhibited optimum activity in 50?mM potassium phosphate buffer pH 7.0. The optimum temperature and substrate concentrations for this enzyme were 50?°C and 50?mM, respectively. The enzyme was quite stable for more than 6?h at 30?°C. It showed substrate specificity against different amides, including aliphatic, aromatic and heterocyclic amides. Under optimized reaction conditions, the amidase is capable of converting 50?mM each of benzamide, nicotinamide and pyrazinamide to corresponding acids within 100, 160 and 120?min, respectively, using 5?mg dry cell mass (DCM) per mL of reaction mixture. The respective percent conversion of these amides was 95.02%, 98.00% and 98.44% achieved by whole cells. The amidase in whole cells can withstand as high as 383?mM concentration of product in a reaction mixture and above which it undergoes product feedback inhibition. The results of this study suggest that Rhodococcus sp. MTB5 amidase has the potential for large-scale production of carboxylic acids of industrial value.  相似文献   
63.
A heat-activated MAP kinase (HAMK), immunologically related to the extracellular signal-regulated kinase (ERK) super-family of protein kinases, has been identified in BY2 cells of tobacco. The activation of HAMK at 37 degrees C was transient and detected within 2 min and reached a maximum level within 5 min. Ca(2+) chelators and channel blockers, and the known inhibitors of MEK, a MAP kinase kinase, prevented the heat activation of HAMK. This suggests that HAMK activation is part of a heat-triggered MAP kinase cascade that requires Ca(2+) influx. The heat shock protein HSP70 accumulated at 37 degrees C, but not when HAMK activation was prevented with the inhibitors of MEK or with Ca(2+) chelators or channel blockers. As previously shown for heat activation of HAMK, heat-induced accumulation of HSP70 requires membrane fluidization and reorganization of cytoskeleton. We concluded that heat-triggered HAMK cascade might play an essential role in the launching of heat shock response and hsp gene expression in tobacco cells.  相似文献   
64.
The complete genome of a Potato virus X (PVX) isolate from India (ptDel‐9), which occurred symptomlessly in potato but induced ringspots on Nicotiana tabacum cv. Xanthi and necrotic mosaic on Nicotiana benthamiana, was sequenced. The genome was 6435 nucleotides long ( JF430080 ) and contained five open reading frames. The isolate was closely related to those reported from the Eurasian region (95.1–97.1% sequence similarity) and distantly related to those reported from South America (77.2–77.9%). The CP gene was expressed in Escherichia coli as a 76‐kDa fusion protein with maltose‐binding protein and used to generate polyclonal antibodies, which successfully detected PVX in field samples of potato by ELISA. In 20% of field samples, for which ELISA failed, the virus was successfully detected by RT‐PCR. This is the first report of molecular characterization of PVX occurring in India.  相似文献   
65.
66.
Polarization of an immune response toward tolerance or immunity is dictated by the interactions between T cells and dendritic cells (DC), which in turn are modulated by the expression of distinct cell surface molecules, and the cytokine milieu in which these interactions are taking place. Genetic modification of DC with genes coding for specific immunoregulatory cell surface molecules and cytokines offers the potential of inhibiting immune responses by selectively targeting Ag-specific T cells. In this study, the immunomodulatory effects of transfecting murine bone marrow-derived DC with Fas ligand (FasL) were investigated. In this study, we show that FasL transfection of DC markedly augmented their capacity to induce apoptosis of Fas+ cells. FasL-transfected DC inhibited allogeneic MLR in vitro, and induced hyporesponsiveness to alloantigen in vivo. The induction of hyporesponsiveness was Ag specific and was dependent on the interaction between FasL on DC and Fas on T cells. Finally, we show that transfusion of FasL-DC significantly prolonged the survival of fully MHC-mismatched vascularized cardiac allografts. Our findings suggest that DC transduced with FasL may facilitate the development of Ag-specific unresponsiveness for the prevention of organ rejection. Moreover, they highlight the potential of genetically engineering DC to express other genes that affect immune responses.  相似文献   
67.
Gordonia are high GC gram-positive bacteria that have not yet been exploited well for biotechnological purposes because of the limited genetic tools. Described here is an improved protocol for electroporation, which is useful for several Gordonia species. The maximum transformation efficiency obtained was 2.8 × 104/μg (Gordonia rubropertinctus, Gordonia sp), and 1.7 × 103/μg (Gordonia amarae).  相似文献   
68.
Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.  相似文献   
69.
The ability of ionizing radiation to initiate genomic instability has been harnessed in the clinic where the localized delivery of controlled doses of radiation is used to induce cell death in tumor cells. Though very effective as a therapy, tumor relapse can occur in vivo and its appearance has been attributed to the radio-resistance of cells with stem cell-like features. The molecular mechanisms underlying these phenomena are unclear but there is evidence suggesting an inverse correlation between radiation-induced genomic instability and global hypomethylation. To further investigate the relationship between DNA hypomethylation, radiosensitivity and genomic stability in stem-like cells we have studied mouse embryonic stem cells containing differing levels of DNA methylation due to the presence or absence of DNA methyltransferases. Unexpectedly, we found that global levels of methylation do not determine radiosensitivity. In particular, radiation-induced delayed genomic instability was observed at the Hprt gene locus only in wild-type cells. Furthermore, absence of Dnmt1 resulted in a 10-fold increase in de novo Hprt mutation rate, which was unaltered by radiation. Our data indicate that functional DNMTs are required for radiation-induced genomic instability, and that individual DNMTs play distinct roles in genome stability. We propose that DNMTS may contribute to the acquirement of radio-resistance in stem-like cells.  相似文献   
70.
Chaperonins are molecular machines that use ATP-driven cycles to assist misfolded substrate proteins to reach the native state. During the functional cycle, these machines adopt distinct nucleotide-dependent conformational states, which reflect large-scale allosteric changes in individual subunits. Distinct allosteric kinetics has been described for the two chaperonin classes. Bacterial (group I) chaperonins, such as GroEL, undergo concerted subunit motions within each ring, whereas archaeal and eukaryotic chaperonins (group II) undergo sequential subunit motions. We study these distinct mechanisms through a comparative normal mode analysis of monomer and double-ring structures of the archaeal chaperonin thermosome and GroEL. We find that thermosome monomers of each type exhibit common low-frequency behavior of normal modes. The observed distinct higher-frequency modes are attributed to functional specialization of these subunit types. The thermosome double-ring structure has larger contribution from higher-frequency modes, as it is found in the GroEL case. We find that long-range intersubunit correlation of amino-acid pairs is weaker in the thermosome ring than in GroEL. Overall, our results indicate that distinct allosteric behavior of the two chaperonin classes originates from different wiring of individual subunits as well as of the intersubunit communications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号