首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   771篇
  免费   49篇
  国内免费   1篇
  2024年   1篇
  2023年   9篇
  2022年   25篇
  2021年   41篇
  2020年   18篇
  2019年   22篇
  2018年   41篇
  2017年   40篇
  2016年   39篇
  2015年   44篇
  2014年   56篇
  2013年   79篇
  2012年   65篇
  2011年   90篇
  2010年   42篇
  2009年   34篇
  2008年   36篇
  2007年   35篇
  2006年   31篇
  2005年   23篇
  2004年   25篇
  2003年   9篇
  2002年   9篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1996年   2篇
排序方式: 共有821条查询结果,搜索用时 15 毫秒
71.
In most applications, small interfering RNAs are designed to execute specific gene silencing via RNA interference (RNAi) without triggering nonspecific responses such as immunostimulation. However, in anticancer therapeutics, immunostimulation combined with specific oncogene silencing could be beneficial, resulting in the synergistic inhibition of cancer cell growth. In this study, we report an immunostimulatory long double-stranded RNA (dsRNA) structure with the ability to trigger RNAi-mediated specific target gene silencing, termed as long interfering dsRNA (liRNA). liRNA targeting Survivin mRNA not only efficiently and specifically triggered target gene silencing via RNAi, but also stimulated the protein kinase R pathway to induce the expression of interferon β. As a result, the ability of Survivin-targeting liRNA to inhibit cancer cell growth was superior over conventional small interfering RNA or nontargeting dsRNA structures. Our results thus provide a simple yet efficient dual function immunostimulatory RNAi-triggering structure, which is potentially applicable for the development of anticancer therapeutics.  相似文献   
72.
Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki = 1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1∶2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.  相似文献   
73.
Singhmar P  Kumar A 《PloS one》2011,6(5):e20397
Many proteins associated with the phenotype microcephaly have been localized to the centrosome or linked to it functionally. All the seven autosomal recessive primary microcephaly (MCPH) proteins localize at the centrosome. Microcephalic osteodysplastic primordial dwarfism type II protein PCNT and Seckel syndrome (also characterized by severe microcephaly) protein ATR are also centrosomal proteins. All of the above findings show the importance of centrosomal proteins as the key players in neurogenesis and brain development. However, the exact mechanism as to how the loss-of-function of these proteins leads to microcephaly remains to be elucidated. To gain insight into the function of the most commonly mutated MCPH gene ASPM, we used the yeast two-hybrid technique to screen a human fetal brain cDNA library with an ASPM bait. The analysis identified Angelman syndrome gene product UBE3A as an ASPM interactor. Like ASPM, UBE3A also localizes to the centrosome. The identification of UBE3A as an ASPM interactor is not surprising as more than 80% of Angelman syndrome patients have microcephaly. However, unlike in MCPH, microcephaly is postnatal in Angelman syndrome patients. Our results show that UBE3A is a cell cycle regulated protein and its level peaks in mitosis. The shRNA knockdown of UBE3A in HEK293 cells led to many mitotic abnormalities including chromosome missegregation, abnormal cytokinesis and apoptosis. Thus our study links Angelman syndrome protein UBE3A to ASPM, centrosome and mitosis for the first time. We suggest that a defective chromosome segregation mechanism is responsible for the development of microcephaly in Angelman syndrome.  相似文献   
74.
Length variation in the human mtDNA intergenic region between the cytochrome oxidase II (COII) and tRNA lysine (tRNAlys) genes has been widely studied in world populations. Specifically, Austronesian populations of the Pacific and Austro-Asiatic populations of southeast Asia most frequently carry the 9-bp deletion in that region implying their shared common ancestry in haplogroup B. Furthermore, multiple independent origins of the 9-bp deletion at the background of other mtDNA haplogroups has been shown in populations of Africa, Europe, Australia, and India. We have analyzed 3293 Indian individuals belonging to 58 populations, representing different caste, tribal, and religious groups, for the length variation in the 9-bp motif. The 9-bp deletion (one copy) and insertion (three copies) alleles were observed in 2.51% (2.15% deletion and 0.36% insertion) of the individuals. The maximum frequency of the deletion (45.8%) was observed in the Nicobarese in association with the haplogroup B5a D-loop motif that is common throughout southeast Asia. The low polymorphism in the D-loop sequence of the Nicobarese B5a samples suggests their recent origin and a founder effect, probably involving migration from southeast Asia. Interestingly, none of the 302 (except one Munda sample, which has 9-bp insertion) from Mundari-speaking Austro-Asiatic populations from the Indian mainland showed the length polymorphism of the 9-bp motif, pointing either to their independent origin from the Mon-Khmeric-speaking Nicobarese or to an extensive admixture with neighboring Indo-European-speaking populations. Consistent with previous reports, the Indo-European and Dravidic populations of India showed low frequency of the 9-bp deletion/insertion. More than 18 independent origins of the deletion or insertion mutation could be inferred in the phylogenetic analysis of the D-loop sequences.  相似文献   
75.
Tea leaf catechins and the ratio of dihydroxylated to trihydroxylated catechin fractions were analysed to identify the genetic diversity of 26 UPASI released tea clones. Principal component analysis (PCA) based on regression factor separated tea clones into five groups according to their jats (Jats are region based rays for e.g., Assam, China and Cambod origin) as well as their quality constituents (such as total polyphenols, total catechins, amino acids in the green leaves and liquor characteristics of black tea), particularly the catechins. Group 1 represented medium quality (quality of the final produce) clones, such as UPASI-10, UPASI-12 and UPASI-15 and drought tolerant clones like UPASI-1, UPASI-2, UPASI-9 and UPASI-10. Group 2 contained purely "China" cultivars while group 3 possessed high quality tea cultivars. "Assam" (group 5) teas had the lowest ratio of dihydroxylated to trihydroxylated catechin fractions (1:4) than the "Chinery" (group 2) teas (1:5). This biochemical differentiation indicated that there is a vast genetic diversity in UPASI released tea clones in terms of catechin fractions, even though the majority of them were selected from one tea estate located in the Nilgiris.  相似文献   
76.
Summary Transfer of genes from heterologous species provides the means of selectively introducing new traits into crop plants and expanding the gene pool beyond what has been available to traditional breeding systems. With the recent advances in genetic engineering of plants, it is now feasible to introduce into crop plants, genes that have previously been inaccessible to the conventional plant breeder, or which did not exist in the crop of interest. This holds a tremendous potential for the genetic enhancement of important food crops. However, the availability of efficient transformation methods to introduce foreign DNA can be a substantial barrier to the application of recombinant DNA methods in some crop plants. Despite significant advances over the past decades, development of efficient transformation methods can take many years of painstaking research. The major components for the development of transgenic plants include the development of reliable tissue culture regeneration systems, preparation of gene constructs and efficient transformation techniques for the introduction of genes into the crop plants, recovery and multiplication of transgenic plants, molecular and genetic characterization of transgenic plants for stable and efficient gene expression, transfer of genes to elite cultivars by conventional breeding methods if required, and the evaluation of transgenic plants for their effectiveness in alleviating the biotic and abiotic stresses without being an environmental biohazard. Amongst these, protocols for the introduction of genes, including the efficient regeneration of shoots in tissue cultures, and transformation methods can be major bottlenecks to the application of genetic transformation technology. Some of the key constraints in transformation procedures and possible solutions for safe development and deployment of transgenic plants for crop improvement are discussed.  相似文献   
77.
Mycobacterium tuberculosis cell envelope is a treasure house of biologically active lipids of fascinating molecular architecture. Although genetic studies have alluded to an array of genes in biosynthesis of complex lipids, their mechanistic, structural, and biochemical principles have not been investigated. Here, we have dissected the molecular logic underlying the biosynthesis of a virulence lipid phthiocerol dimycocerosate (PDIM). Cell-free reconstitution studies demonstrate that polyketide synthases, which are usually involved in the biosynthesis of secondary metabolites, are responsible for generating complex lipids in mycobacteria. We show that PapA5 protein directly transfers the protein bound mycocerosic acid analogs on phthiocerol to catalyze the final esterification step. Based on precise identification of biological functions of proteins from Pps cluster, we have rationally produced a nonmethylated variant of mycocerosate esters. Apart from elucidating mechanisms that generate chemical heterogeneity with PDIMs, this study also presents an attractive approach to explore host-pathogen interactions by altering mycobacterial surface coat.  相似文献   
78.
Yersinia enterocolitica is an extremely heterogeneous species. Serotyping and biotyping have been used extensively, in the past, to study its heterogeneity and epidemiology. Application of methods like ribotyping, pulsed-field gel electrophoresis and a host of other genomic techniques have further revealed molecular heterogeneity in this species. Furthermore, these methods may be used effectively to supplement serotyping and biotyping schema for studying epidemiology of Y. enterocolitica. This is evident from the ability of some of these methods to subtype strains belonging to serogroups O:3, O:9 and O:8 - which are most commonly encountered in human Yersiniosis. Multilocus enzyme electrophoresis and nucleotide sequencing have reiterated the taxonomic relationships of this organism. However there is paucity of information about the molecular heterogeneity of 'Y. enterocolitica-like' species, which need to be addressed in the future. Also, newer techniques such as amplified fragment length polymorphism, VNTR-based typing and multilocus sequence typing should be applied to further understand epidemiology, population structure and evolutionary genetics of Y. enterocolitica and 'Y. enterocolitica-like' species.  相似文献   
79.
80.
Here we report that myeloid cells differentiating along the monocyte/macrophage lineage down-regulate the ST6Gal-I sialyltransferase via a protein kinase C/Ras/ERK signaling cascade. In consequence, the beta1 integrin subunit becomes hyposialylated, which stimulates the ligand binding activity of alpha5beta1 fibronectin receptors. Pharmacologic inhibitors of protein kinase C, Ras, and MEK, but not phosphoinositide 3-kinase, block ST6Gal-I down-regulation, integrin hyposialylation, and fibronectin binding. In contrast, constitutively active MEK stimulates these same events, indicating that ERK is both a necessary and sufficient activator of hyposialylation-dependent integrin activation. Consistent with the enhanced activity of hyposialylated cell surface integrins, purified alpha5beta1 receptors bind fibronectin more strongly upon enzymatic desialylation, an effect completely reversed by resialylation of these integrins with recombinant ST6Gal-I. Finally, we have mapped the N-glycosylation sites on the beta1 integrin to better understand the potential effects of differential sialylation on integrin structure/function. Notably, there are three N-glycosylated sites within the beta1 I-like domain, a region that plays a crucial role in ligand binding. Our collective results suggest that variant sialylation, induced by a specific signaling cascade, mediates the sustained increase in cell adhesiveness associated with monocytic differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号