首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   476篇
  免费   28篇
  504篇
  2023年   9篇
  2022年   22篇
  2021年   28篇
  2020年   7篇
  2019年   14篇
  2018年   22篇
  2017年   27篇
  2016年   28篇
  2015年   30篇
  2014年   41篇
  2013年   45篇
  2012年   40篇
  2011年   58篇
  2010年   27篇
  2009年   23篇
  2008年   17篇
  2007年   15篇
  2006年   16篇
  2005年   15篇
  2004年   10篇
  2003年   4篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
排序方式: 共有504条查询结果,搜索用时 9 毫秒
1.
2.
Modulation of plant immune system by extrinsic/intrinsic factors and host‐specific determinants fine‐tunes cellular components involving multiple organelles, particularly nucleus to mount resistance against pathogen attack. Rice blast, caused by hemibiotrophic fungus Magnaporthe oryzae, is one of the most devastating diseases that adversely affect rice productivity. However, the role of nuclear proteins and their regulation in response to M. oryzae remains unknown. Here, the nucleus‐associated immune pathways in blast‐resistant rice genotype are elucidated. Temporal analysis of nuclear proteome is carried out using 2‐DE coupled MS/MS analysis. A total of 140 immune responsive proteins are identified associated with nuclear reorganization, cell division, energy production/deprivation, signaling, and gene regulation. The proteome data are interrogated using correlation network analysis that identified significant functional modules pointing toward immune‐related coinciding processes through a common mechanism of remodeling and homeostasis. Novel clues regarding blast resistance include nucleus‐associated redox homeostasis and glycolytic enzyme–mediated chromatin organization which manipulates cell division and immunity. Taken together, the study herein provides evidence that the coordination of nuclear function and reprogramming of host translational machinery regulate resistance mechanism against blast disease.  相似文献   
3.
4.
The methyltransferase KsgA modifies two adjacent adenosines in 16S rRNA by adding two methyl groups to the N(6) position of each nucleotide. Unlike nearly all other rRNA modifications, these modifications and the responsible enzyme are highly conserved phylogenetically, suggesting that the modification system has an important role in ribosome biogenesis. It has been known for some time that KsgA recognizes a complex pre-30S substrate in vitro, but there is disagreement in the literature as to what that substrate can be. That disagreement is resolved in this report; KsgA is unable to methylate 30S subunits in the translationally active conformation, but rather can modify 30S when in an experimentally well established translationally inactive conformation. Recent 30S crystal structures provide some basis for explaining why it is impossible for KsgA to methylate 30S in the translationally active conformation. Previous work identified one set of ribosomal proteins important for efficient methylation by KsgA and another set refractory methylation. With the exception of S21 the recent crystal structures of 30S also instructs that the proteins important for KsgA activity all exert their influence indirectly. Unfortunately, S21, which is inhibitory to KsgA activity, has not had its position determined by X-ray crystallography. A reevaluation of published biophysical data on the location also suggests that the refractory nature of S21 is also indirect. Therefore, it appears that KsgA solely senses the conformation 16S rRNA when carrying out its enzymatic activity.  相似文献   
5.
Crk (C10 regulator of kinase) adaptor proteins are highly expressed in many types of human cancers and often contribute to aggressive cancer phenotypes. Crk II, a member of CRK family, has been reported to regulate cell migration and metastasis in breast cancer cells. However, its role in other cancer types has not been reported. In this study, we investigated the molecular function of Crk II in prostate cancer (PCa) cells (CWR-22rv1) in vitro and using a mouse tumor model. Results showed that Crk II knockdown by shRNA-mediated silencing (Crk II-shRNA) in the PCa cells significantly inhibited both cancer cell migration and invasion in cell culture study. Crk II-shRNA cancer cells also significantly decreased colony formation in vitro, but had no significant reduction of tumor volume after 4 weeks of cancer cell xenografting in vivo when compared to the scramble control. Interestingly, Crk II-shRNA cancer cells showed a greatly reduced level of insulin-like growth factor 1 receptor (IGF-1R) and decreased signaling of the IGF-1R/PI3K/Akt axis upon IGF-1 ligand stimulation. A close interaction between Crk II and IGF-1R was demonstrated upon co-immunoprecipitation of IGF-1R with Crk II protein. Further, treatment of cells with either proteosomal degradation or protein synthesis inhibitor showed higher proportion of ubiquitin-associated IGF-1R and faster degradation of IGF-1R in Crk II-shRNA cells in comparison with that in the control cancer cells. Taken together, these data suggest that Crk II plays an important role in the regulation of IGF-1R protein stability and affects downstream of IGF-1R signaling pathways. Therefore, targeting Crk-II can block IGF-1R growth signaling and suppress cancer cell invasion and progression.  相似文献   
6.
7.
Three iridoid glycosides 6-O-(3'-O-benzoyl)-alpha-l-rhamnopyranosylcatalpol (1a), 6-O-(3'-O-trans-cinnamoyl)-alpha-l-rhamnopyranosylcatalpol (2a) and 6-O-(3'-O-cis-cinnamoyl)-alpha-l-rhamnopyranosylcatalpol (3a) were isolated from aerial parts of Gmelina arborea and structures were elucidated by spectral analysis. Additionally a known iridoid 6-O-(3', 4'-O-dibenzoyl)-alpha-l-rhamnopyranosylcatalpol (4) was also isolated and identified.  相似文献   
8.
In most applications, small interfering RNAs are designed to execute specific gene silencing via RNA interference (RNAi) without triggering nonspecific responses such as immunostimulation. However, in anticancer therapeutics, immunostimulation combined with specific oncogene silencing could be beneficial, resulting in the synergistic inhibition of cancer cell growth. In this study, we report an immunostimulatory long double-stranded RNA (dsRNA) structure with the ability to trigger RNAi-mediated specific target gene silencing, termed as long interfering dsRNA (liRNA). liRNA targeting Survivin mRNA not only efficiently and specifically triggered target gene silencing via RNAi, but also stimulated the protein kinase R pathway to induce the expression of interferon β. As a result, the ability of Survivin-targeting liRNA to inhibit cancer cell growth was superior over conventional small interfering RNA or nontargeting dsRNA structures. Our results thus provide a simple yet efficient dual function immunostimulatory RNAi-triggering structure, which is potentially applicable for the development of anticancer therapeutics.  相似文献   
9.
Human induced pluripotent stem cells (iPSCs) are potential renewable sources of hepatocytes for drug development and cell therapy. Differentiation of human iPSCs into different developmental stages of hepatic cells has been achieved and improved during the last several years. We have recently demonstrated the liver engraftment and regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo. Here we describe the in vitro and in vivo activities of hepatic cells derived from patientspecific iPSCs, including multiple lines established from either inherited or acquired liver diseases, and discuss basic and clinical applications of these cells for disease modeling, drug screening and discovery, gene therapy and cell replacement therapy.Key words: induced pluripotent stem cells (iPSCs), hepatic differentiation, liver ngraftment, disease modeling, drug testing, alpha-1 antitrypsin, liver cirrhosis, hepatocellular carcinoma, cell therapy  相似文献   
10.
Tamoxifen (Tam) is most widely used selective estrogen receptor modulator (SERM) for treatment of hormone-responsive breast cancer. Despite being regularly used in clinical therapy for breast cancer since 1971, the mechanism of Tam action remains largely unclear. In order to gain insights into Tam-mediated antibreast cancer actions, we applied 2DE and MS based proteomics approach to identify target proteins of Tam. We identified E6-associated protein, i.e. E6AP (UBE3A) among others to be regulated by Tam that otherwise is upregulated in breast tumors. We confirmed our 2DE finding by immunoblotting and further show that Tam leads to inhibition of E6AP expression presumably by promoting its autoubiquitination, which is coupled with nuclear export and subsequent proteasome-mediated degradation. Furthermore, we show that Tam- and siE6AP-mediated inhibition of E6AP leads to enhanced G0-G1 growth arrest and apoptosis, which is also evident from significant upregulation of cytochrome-c, Bax, p21, and PARP cleavage. Taken together, our data suggest that, Tam-targeted E6AP inhibition is in fact required for Tam-mediated antibreast cancer actions. Thus, E6AP may be a therapeutic target in breast cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号