首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   41篇
  国内免费   1篇
  2021年   5篇
  2020年   4篇
  2018年   2篇
  2016年   2篇
  2015年   5篇
  2014年   7篇
  2013年   21篇
  2012年   15篇
  2011年   10篇
  2010年   12篇
  2009年   16篇
  2008年   8篇
  2007年   15篇
  2006年   13篇
  2005年   9篇
  2004年   12篇
  2003年   8篇
  2002年   4篇
  2001年   8篇
  2000年   9篇
  1999年   7篇
  1998年   13篇
  1997年   10篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   3篇
  1992年   5篇
  1991年   10篇
  1990年   8篇
  1989年   16篇
  1988年   14篇
  1987年   11篇
  1986年   7篇
  1985年   5篇
  1984年   2篇
  1983年   6篇
  1982年   2篇
  1980年   2篇
  1979年   4篇
  1977年   2篇
  1975年   3篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   4篇
  1968年   1篇
  1967年   1篇
  1963年   1篇
  1959年   1篇
排序方式: 共有349条查询结果,搜索用时 218 毫秒
81.
Summary Using two synthetic deoxyribonucleotide probes encoding segments of the primary structure of initiation factor IF3 from Bacillus stearothermophilus, we identified and cloned a segment of DNA which carries the infC gene. As in Escherichia coli, the infC gene begins with the unusual initiation triplet AUU, and is followed by the structural genes for ribosomal proteins L35 and L20 (rpmI and rplT, respectively).  相似文献   
82.
The non-exchangeable and imino proton NMR resonances have been assigned of the 1:1 complex of an analogue 2 of Hoechst 33258 1 bound to the decadeoxyribonuycleotide d-[CATGGCCATG]2 by a combination of NOE difference, COSY and NOESYPH techniques. In contrast to Hoechst 33258 which recognizes 5'-AATT sequences exclusively, analogue 2 possesses structural features designed to permit the recognition of GC sites. The NOESY and 1D-NOE experiments place the drug in the minor groove and it is located on the 5'-CCAT sequence. The orientation of the drug in the groove is such as to place the N-methylpiperazine terminus at a GC site. Cross-correlation peaks in the NOESY experiment show that the DNA duplex retains its right-handed B form, similar to that in the free decamer. Specific NOEs locate the benzoxazole moiety on the 5'-CCAT and are consistent with the pyridine nitrogen forming a new hydrogen bond to G(4)-2NH2 at 5'-CCAT. The drug appears to undergo rotation around the C9-C10 bond, at a rate comparable with NMR time scale, even after binding. Variable temperature 1H-NMR studies established that the DNA is thermally stabilized as a result of the drug binding. The drug binding is a dynamic process involving exchange between the equivalent 5'-CCAT sites at approximately 60s-1 with delta G degree of 65 kJ mol-1 at 308K. The experimental evidence is in accord with a slide-swing mechanism for this process.  相似文献   
83.
Saccharomyces cerevisiae are widely used for imaging fluorescently tagged protein fusions. Fluorescent proteins can easily be inserted into yeast genes at their chromosomal locus, by homologous recombination, for expression of tagged proteins at endogenous levels. This is especially useful for incorporation of multiple fluorescent protein fusions into a single strain, which can be challenging in organisms where genetic manipulation is more complex. However, the availability of optimal fluorescent protein combinations for 3-color imaging is limited. Here, we have characterized a combination of fluorescent proteins, mTFP1/mCitrine/mCherry for multicolor live cell imaging in S. cerevisiae. This combination can be used with conventional blue dyes, such as DAPI, for potential four-color live cell imaging.  相似文献   
84.
The interaction between nucleic acids and Escherichia coli H-NS, an abundant 15 kDa histone-like protein, has been studied by affinity chromatography, nitrocellulose filtration and fluorescence spectroscopy. Intrinsic fluorescence studies showed that the single Trp residue of H-NS (position 108) has a restricted mobility and is located within an hydrophobic region inaccessible to both anionic and cationic quenchers. Binding of H-NS to nucleic acids, however, results in a change of the microenvironment of the Trp residue and fluorescence quenching; from the titration curves obtained with addition of increasing amounts of poly(dA)-poly(dT) and poly(dC)-poly(dG) it can be estimated that an H-NS dimer in 1.5 x SSC binds DNA with an apparent Ka approximately equal to 1.1 x 10(4) M-1.bp-1. H-NS binds to double-stranded DNA with a higher affinity than the more abundant histone-like protein NS(HU) and, unlike NS, prefers double-stranded to single-stranded DNA and DNA to RNA; both monovalent and divalent cations are required for optimal binding.  相似文献   
85.
86.
87.
88.
The Chk2-mediated deoxyribonucleic acid (DNA) damage checkpoint pathway is important for mitochondrial DNA (mtDNA) maintenance. We show in this paper that mtDNA itself affects cell cycle progression. Saccharomyces cerevisiae rho(0) cells, which lack mtDNA, were defective in G1- to S-phase progression. Deletion of subunit Va of cytochrome c oxidase, inhibition of F(1)F(0) adenosine triphosphatase, or replacement of all mtDNA-encoded genes with noncoding DNA did not affect G1- to S-phase progression. Thus, the cell cycle progression defect in rho(0) cells is caused by loss of DNA within mitochondria and not loss of respiratory activity or mtDNA-encoded genes. Rad53p, the yeast Chk2 homologue, was required for inhibition of G1- to S-phase progression in rho(0) cells. Pif1p, a DNA helicase and Rad53p target, underwent Rad53p-dependent phosphorylation in rho(0) cells. Thus, loss of mtDNA activated an established checkpoint kinase that inhibited G1- to S-phase progression. These findings support the existence of a Rad53p-regulated checkpoint that regulates G1- to S-phase progression in response to loss of mtDNA.  相似文献   
89.
90.
Diabetes-induced hyperlipidemia, oxidative stress and protein glycation impair cellular calcium and sodium homeostasis associated with abnormal membrane-bound enzyme activities resulting in cardiac dysfunction in diabetes. To explore the cardioprotective mechanism of green tea in diabetes, we measured the changes in the levels of calcium, sodium, potassium and the activities of Na+/K+ -ATPase and Ca2+ -ATPase in green tea treated diabetic rat hearts. The effect of green tea on triglycerides, lipid peroxidation and protein glycation in diabetic heart were also measured to elucidate the underlying mechanisms. Diabetes was induced by streptozotocin (STZ, 60 mg/kg i.p.). Six weeks after the induction of diabetes, some of the diabetic rats were treated orally with green tea extract (GTE) (300 mg/kg/day) for 4 weeks. GTE produced reduction in blood glucose and lowered the levels of lipid peroxides, triglycerides and extent of protein glycation in the heart of diabetic rats. GTE blunted the rise in cardiac [Ca2+] and [Na+] whereas increased the activities of Ca2+ -ATPase and Na+/K+ -ATPase in diabetic rats. In conclusion, the data provide support to the therapeutic effect of GTE and suggest that a possible mechanism of action may be associated with the attenuation of the rise in [Ca2+] and [Na+] by ameliorating Ca2+ -ATPase and Na+/K+ -ATPase activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号