首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101221篇
  免费   1055篇
  国内免费   813篇
  2022年   76篇
  2021年   127篇
  2020年   86篇
  2019年   105篇
  2018年   11925篇
  2017年   10750篇
  2016年   7590篇
  2015年   837篇
  2014年   593篇
  2013年   720篇
  2012年   4606篇
  2011年   13258篇
  2010年   12301篇
  2009年   8505篇
  2008年   10178篇
  2007年   11726篇
  2006年   602篇
  2005年   855篇
  2004年   1298篇
  2003年   1330篇
  2002年   1105篇
  2001年   412篇
  2000年   359篇
  1999年   169篇
  1998年   118篇
  1997年   112篇
  1996年   90篇
  1995年   83篇
  1994年   83篇
  1993年   82篇
  1992年   141篇
  1991年   135篇
  1990年   122篇
  1989年   96篇
  1988年   143篇
  1987年   103篇
  1986年   81篇
  1985年   110篇
  1984年   86篇
  1983年   100篇
  1982年   98篇
  1980年   63篇
  1979年   67篇
  1978年   68篇
  1977年   76篇
  1976年   71篇
  1975年   72篇
  1974年   72篇
  1972年   308篇
  1971年   312篇
排序方式: 共有10000条查询结果,搜索用时 100 毫秒
981.
Acute choice behavior in ingesting two different concentrations of sucrose in Drosophila is presumed to include learning and memory. Effects on this behavior were examined for four mutations that block associative learning (dunce, rutabaga, amnesiac, and radish). Three of these mutations cause cyclic AMP signaling defects and significantly reduced taste discrimination. The exception was radish, which affects neither. Electrophysiological recordings confirmed that the sensitivity of taste receptors is almost indistinguishable in all flies, whether wild type or mutant. These results suggest that food choice behavior in Drosophila involves central nervous learning and memory operating via cyclic AMP signaling pathways.  相似文献   
982.
This paper seeks to understand why multinationals prefer to launch a label specific to their own product and examines how reliable these product-specific eco-labels are. A new methodology is applied to assess the extent to which eco-labels live up to claims about their contribution to conservation and the sustainable use of agricultural biodiversity. Product-specific eco-labels are considered as industry self-regulation and all three regulatory stages are studied: the planning, implementation and outcome stage. There are major differences between the product specific eco-labels in the degree in which agrobiodiversity management is part of the normative labeling schemes. Although there are some problems of reliability, such as transparency in the implementation stage and the monitoring in the outcome stage, the degree of reliability of product-specific labels is comparable with eco-labels of international labeling families. The conclusion is that only one of the product-specific eco-labels examined here is reliable when examined in the light of all three stages. The main reason why multinationals establish a product-specific eco-label instead of adopting one from an existing labeling family is that they want to profile themselves as distinct from other companies. The unique character of a product-specific label creates a market opportunity for them.  相似文献   
983.
Root cap development in cereals and legumes is self-regulated by a repressor that accumulates in the extracellular environment, and immersing the root tip into water results in renewed cap development. By exploiting this phenomenon, root cap mitosis and differentiation can be synchronously induced among populations. In Pisum sativum L., messenger RNA (mRNA) differential display revealed changes in expression of approximately 1% of the sample mRNA population within minutes of induced cap turnover. This profile changes sequentially over a period of 30 min, then stabilizes. Microarray analysis of Medicago truncatula root caps confirmed changes in expression of approximately 1% of the target population, within minutes. A cell specific marker for cap turnover exhibited the same temporal and spatial expression profile in the gymnosperm species Norway spruce (Picea abies) as in pea. Induced cap development provides a means to profile cell-specific gene expression among phylogenetically diverse species from the early moments of mitosis and cellular differentiation.  相似文献   
984.
Seedlings of two barley genotypes (‘Maresi’ and wild form of Hordeum spontaneum) were treated with jasmonic acid (JA 5 μM and 15 μM) for 24 h, and then subjected to water stress (PEG 6000 solution of − 1.5 MPa). JA caused an increase in the content of ABA but not in that of proline and spermidine in the two studied genotypes. The effect of the treatment did not depend on the applied JA concentration. The pre-stress treatment with JA changed plant response to water deficit with regard to membrane injury. Treatment with a lower JA concentration (5 μM) caused a substantial reduction of the stress-induced membrane damage in the both genotypes. A higher JA concentration (15 μM) caused the reduction of membrane injury only in H. spontaneum and was ineffective in ‘Maresi’. JA had no influence on the leaf water status in water-stressed plants. A possible role of JA in leaf ABA accumulation and alleviation of cell membrane injury under water deficit is discussed. The work was partly supported by the Polish Committee For Scientific Research, grant No 5 PO6A 036 18  相似文献   
985.
986.

Aims

The present study was planned to investigate the diversity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing bacteria from the rhizosphere of wheat plants and subsequent evaluation of selected PGPR on growth enhancement of wheat seedlings under drought and saline conditions.

Methods

ACC deaminase producing plant growth promoting rhizobacteria (PGPR) were isolated from the rhizosphere of wheat and identified using 16S rRNA gene sequence analysis. Isolates were evaluated for various direct and indirect plant growth promoting (PGP) traits. Plant inoculation experiment was conducted using isolates IG 19 and IG 22 in wheat to assess their plant growth promotion potential under salinity and drought stress.

Results

Thirty-eight ACC deaminase producing PGPR were isolated which belonged to 12 distinct genera and falling into four phyla γ-proteobacteria, β-proteobacteria, Flavobacteria and Firmicutes. Klebsiella sp. was the most abundant genera and followed by Enterobacter sp. The isolates exhibited ACC deaminase activities ranging from 0.106–0.980 μM α- ketobutyrate μg protein?1 h?1. The isolates showed multiple PGP traits such as IAA production, phosphate, zinc, potassium solubilization and siderophore production. Enterobacter cloacae (IG 19) and Citrobacter sp. (IG 22) inoculated wheat seedlings showed notable increases in fresh and dry biomass under non-stress as well as under stressed condition.

Conclusion

To the best of our knowledge this is the first report of presence of ACC deaminase activity and other PGP traits from the genus Citrobacter and Empedobacter. Our finding revealed that the γ-proteobacteria group dominated the wheat rhizosphere. Plant inoculation with PGPR could be a sustainable approach to alleviate abiotic stresses in wheat plants. These native PGPR isolates could be used as potential biofertilizers for sustainable agriculture.
  相似文献   
987.
Conflicts of interest, stemming from relationships between health professionals and the pharmaceutical industry, remain a highly divisive and inflammatory issue in healthcare. Given that most jurisdictions rely on industry to self-regulate with respect to its interactions with health professionals, it is surprising that little research has explored industry leaders’ understandings of conflicts of interest. Drawing from in-depth interviews with ten pharmaceutical industry leaders based in Australia, we explore the normalized and structural management of conflicts of interest within pharmaceutical companies. We contrast this with participants’ unanimous belief that the antidote to conflicts of interest with health professionals were “informed consumers.” It is, thus, unlikely that a self-regulatory approach will be successful in ensuring ethical interactions with health professionals. However, the pharmaceutical industry’s routine and accepted practices for disclosing and managing employees’ conflicts of interest could, paradoxically, serve as an excellent model for healthcare.  相似文献   
988.
Graft-versus-host disease (GVHD) induced by host antigen-presenting cells (APCs) and donor-derived T cells remains the major limitation of allogeneic bone marrow transplantation (allo-BMT). Notch signaling pathway is a highly conserved cell-cell communication that is important in T cell development. Recently, Notch signaling pathway is reported to be involved in regulating GVHD. To investigate the role of Notch inhibition in modulating GVHD, we established MHC-mismatched murine allo-BMT model. We found that inhibition of Notch signaling pathway by γ-secretase inhibitor in vivo could reduce aGVHD, which was shown by the onset time of aGVHD, body weight, clinical aGVHD scores, pathology aGVHD scores, and survival. Inhibition of Notch signaling pathway by DAPT ex vivo only reduced pathology aGVHD scores in the liver and intestine and had no impact on the onset time and clinical aGVHD scores. We investigated the possible mechanism by analyzing the phenotype of host APCs and donor-derived T cells. Notch signaling pathway had a broad effect on both host APCs and donor-derived T cells. The expressions of CD11c, CD40, and CD86 as the markers of activated dendritic cells (DCs) were decreased. The proliferative response of CD8+ T cell decreased, while CD4+ Notch-deprived T cells had preserved expansion with increased expressions of CD25 and Foxp3 as markers of regulatory T cells (Tregs). In conclusion, Notch inhibition may minimize aGVHD by decreasing proliferation and activation of DCs and CD8+ T cells while preserving Tregs expansion.  相似文献   
989.
Genome editing is a powerful technology that can efficiently alter the genome of organisms to achieve targeted modification of endogenous genes and targeted integration of exogenous genes. Current genome-editing tools mainly include ZFN, TALEN and CRISPR/Cas9, which have been successfully applied to all species tested including zebrafish, humans, mice, rats, monkeys, pigs, cattle, sheep, goats and others. The application of genome editing has quickly swept through the entire biomedical field, including livestock breeding. Traditional livestock breeding is associated with rate limiting issues such as long breeding cycle and limitations of genetic resources. Genome editing tools offer solutions to these problems at affordable costs. Generation of gene-edited livestock with improved traits has proven feasible and valuable. For example, the CD163 gene-edited pig is resistant to porcine reproductive and respiratory syndrome (PRRS, also referred to as “blue ear disease”), and a SP110 gene knock-in cow less susceptible to tuberculosis. Given the high efficiency and low cost of genome editing tools, particularly CRISPR/Cas9, it is foreseeable that a significant number of genome edited livestock animals will be produced in the near future; hence it is imperative to comprehensively evaluate the pros and cons they will bring to the livestock breeding industry. Only with these considerations in mind, we will be able to fully take the advantage of the genome editing era in livestock breeding.  相似文献   
990.
Production of 2,3-butanediol by Bacillus subtilis takes place in late-log or stationary phase, depending on the expression of bdhA gene encoding acetoin reductase, which converts acetoin to 2,3-butanediol. The present work focuses on the development of a strain of B. subtilis for enhanced production of 2,3-butanediol in early log phase of growth cycle. For this, the bdhA gene was expressed under the control of P alsSD promoter of AlsSD operon for acetoin fermentation which served the substrate for 2,3-butanediol production. Addition of acetic acid in the medium induced the production of 2,3-butanediol by 2-fold. Two-step aerobic–anaerobic fermentation further enhanced 2,3-butanediol production by 4-fold in comparison to the control parental strain. Thus, addition of acetic acid and low dissolved oxygen in the medium are involved in activation of bdhA gene expression from P alsSD promoter in early log phase. Under the conditions tested in this work, the maximum production of 2,3-butanediol, 2.1 g/l from 10 g/l glucose, was obtained at 24 h. Furthermore, under the optimized microaerophilic condition, the production of 2,3-butanediol improved up to 6.1 g/l and overall productivity increased by 6.7-fold to 0.4 g/l h in the engineered strain compared to that in the parental control.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号