首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   954篇
  免费   157篇
  1111篇
  2021年   8篇
  2016年   20篇
  2015年   31篇
  2014年   34篇
  2013年   43篇
  2012年   45篇
  2011年   35篇
  2010年   21篇
  2009年   29篇
  2008年   36篇
  2007年   29篇
  2006年   36篇
  2005年   33篇
  2004年   35篇
  2003年   19篇
  2002年   31篇
  2001年   29篇
  2000年   33篇
  1999年   29篇
  1998年   13篇
  1997年   7篇
  1996年   10篇
  1994年   9篇
  1993年   9篇
  1992年   26篇
  1991年   22篇
  1990年   24篇
  1989年   22篇
  1988年   16篇
  1987年   18篇
  1986年   20篇
  1985年   18篇
  1984年   15篇
  1983年   12篇
  1982年   20篇
  1981年   12篇
  1980年   14篇
  1979年   12篇
  1978年   14篇
  1977年   16篇
  1976年   15篇
  1975年   14篇
  1974年   16篇
  1973年   21篇
  1972年   8篇
  1971年   13篇
  1969年   15篇
  1968年   12篇
  1967年   9篇
  1966年   12篇
排序方式: 共有1111条查询结果,搜索用时 0 毫秒
71.
Mammalian cells deploy autophagy to defend their cytosol against bacterial invaders. Anti‐bacterial autophagy relies on the core autophagy machinery, cargo receptors, and “eat‐me” signals such as galectin‐8 and ubiquitin that label bacteria as autophagy cargo. Anti‐bacterial autophagy also requires the kinase TBK1, whose role in autophagy has remained enigmatic. Here we show that recruitment of WIPI2, itself essential for anti‐bacterial autophagy, is dependent on the localization of catalytically active TBK1 to the vicinity of cytosolic bacteria. Experimental manipulation of TBK1 recruitment revealed that engagement of TBK1 with any of a variety of Salmonella‐associated “eat‐me” signals, including host‐derived glycans and K48‐ and K63‐linked ubiquitin chains, suffices to restrict bacterial proliferation. Promiscuity in recruiting TBK1 via independent signals may buffer TBK1 functionality from potential bacterial antagonism and thus be of evolutionary advantage to the host.  相似文献   
72.

Background

Enteric fever remains an important cause of morbidity in many low-income countries and Salmonella Paratyphi A has emerged as the aetiological agent in an increasing proportion of cases. Lack of adequate diagnostics hinders early diagnosis and prompt treatment of both typhoid and paratyphoid but development of assays to identify paratyphoid has been particularly neglected. Here we describe the development of a rapid and sensitive blood culture PCR method for detection of Salmonella Paratyphi A from blood, potentially allowing for appropriate diagnosis and antimicrobial treatment to be initiated on the same day.

Methods

Venous blood samples from volunteers experimentally challenged orally with Salmonella Paratyphi A, who subsequently developed paratyphoid, were taken on the day of diagnosis; 10 ml for quantitative blood culture and automated blood culture, and 5 ml for blood culture PCR. In the latter assay, bacteria were grown in tryptone soy broth containing 2.4% ox bile and micrococcal nuclease for 5 hours (37°C) before bacterial DNA was isolated for PCR detection targeting the fliC-a gene of Salmonella Paratyphi A.

Results

An optimized broth containing 2.4% ox bile and micrococcal nuclease, as well as a PCR test was developed for a blood culture PCR assay of Salmonella Paratyphi A. The volunteers diagnosed with paratyphoid had a median bacterial burden of 1 (range 0.1–6.9) CFU/ml blood. All the blood culture PCR positive cases where a positive bacterial growth was shown by quantitative blood culture had a bacterial burden of ≥ 0.3 CFU/ ml blood. The blood culture PCR assay identified an equal number of positive cases as automated blood culture at higher bacterial loads (≥0.3 CFU/ml blood), but utilized only half the volume of specimens.

Conclusions

The blood culture PCR method for detection of Salmonella Paratyphi A can be completed within 9 hours and offers the potential for same-day diagnosis of enteric fever. Using 5 ml blood, it exhibited a lower limit of detection equal to 0.3 CFU/ml blood, and it performed at least as well as automated blood culture at higher bacterial loads (≥0.3 CFU/ml blood) of clinical specimens despite using half the volume of blood. The findings warrant its further study in endemic populations with a potential use as a novel diagnostic which fills the present gap of paratyphoid diagnostics.  相似文献   
73.
A method for the identification of the 5′-linked termini of ribosomal RNA is described. The method involves the phosphorylation of the nucleosides released from the 5′-linked termini after hydrolysis of the ribonucleic acid chain with alkali. The radioactive 5′-nucleotide derivatives are formed by a nucleoside phosphotransferase mediated phosphoryl transfer from (32P) p-nitrophenyl phosphate to the nucleosides. The sensitivity of the method allows the use of small amounts of ribosomal RNA.  相似文献   
74.
Zymographic analysis of the supernates from confluent cultures of a rat prostate adenocarcinoma cell line, PA-III, revealed the existence of two molecular forms of specific plasminogen activators, one of molecular weight of approximately 80 000 and another of approximate molecular weight of 45 000, in sodium dodecyl sulfate. The low molecular weight form has been purified 364-fold in 66% yield from the culture medium by a combination of gel filtration on Sephacryl S-200 and affinity chromatography on Sepharose 4B-benzamidine. The purified material possessed a specific activity of 192 000 urokinase CTA units mg-1. This enzyme displayed activity toward human Glu1-plasminogen, characterized by a Km of 1.7 +/- 0.2 microM and a Vmax of 0.53 +/- 0.1 pmol of plasmin min-1 unit-1. A synthetic chromogenic substrate, H-D-Ile-Pro-Arg-p-nitroanilide (S-2288), was found for the activator. The enzyme possessed a Km of 0.33 mM and a kcat of 55 s-1 for S-2288. The activator was found to be a serine protease, inhibited by diisopropyl fluorophosphate (iPr2PF). At a concentration of 1 mM iPr2PF, and 30 nM enzyme, the half-time of this inhibition was 3.8 min. The 45 000 molecular weight enzyme was found to be inhibited by rabbit antibodies to human urokinase, thus characterizing the activator as a member of the urokinase class. The 80 000 molecular weight enzyme was not neutralized by anti-human urokinase but was neutralized by rabbit anti-human melanoma activator, likely allowing it to be classified as the tissue activator type.  相似文献   
75.
76.
Hyperaccumulators are plants that store exceptionally high concentrations of heavy metals or metalloids in their leaves. Phytolacca americana is one of the few species known to hyperaccumulate manganese (Mn); however, it is a common weedy species and has no specific association with high-Mn soils. Neither the mechanism by which P. americana hyperaccumulates Mn nor the ecological significance of this trait are well understood. It has recently been suggested that P. americana secretes acids into the rhizosphere as a means of acquiring phosphate, which might coincidentally increase Mn uptake. To determine whether P. americana acidifies the surrounding soil, plants were grown in rhizoboxes providing access to living roots. A thin layer of agar containing bromocresol green pH indicator dye was placed on the roots to observe color changes indicating acidification. Comparative studies showed that P. americana acidifies the rhizosphere significantly more than the non-accumulating plant Acalypha rhomboidea. A second experiment studied whether adjustment of soil pH and phosphate affect foliar Mn concentrations of P. americana. Concentrations of Mn in leaves were highest when plants were grown in acidified soils but were significantly lower in soils that were alkaline and/or enriched with phosphate. These results suggest that Mn hyperaccumulation may be a side effect of rhizosphere acidification as a phosphorus-acquisition mechanism, rather than an adaptation in its own right. The findings provide fundamental information about hyperaccumulator physiology and evolution, and may be relevant to attempts to utilize P. americana for phytoremediation.  相似文献   
77.
78.
79.
Previous studies on the synthesis and function of the protein synthetic machinery through the growth cycle of normal cultured hamster embryo fibroblasts (HA) were extended here to a series of four different clonal lines of polyoma virus-transformed HA cells. Under our culture conditions, these transformed cells could enter a stationary phase characterized by no mitotic cells, very low rates of DNA synthesis, and arrest in a post-mitotic pre-DNA synthetic state. Cellular viability was initially high in stationary phase but, unlike normal cells, transformed cells slowly lost viability. The rate of protein synthesis in the stationary phase of the transformed cells fell to 25-30% of the exponential rate. Though this reduction was similar to that seen in normal cells, it was accomplished by different means. The specific reduction in the ribosome complement per cell to values below that of any cycling cell seen in normal cells, was not seen in any of the transformed lines. This observation, which implies a loss of normal control of ribisome synthesis through the growth cycle after transformation, was confirmed in normal Chinese hamster embryo fibroblasts and transformed CHO cell lines. Normal control of ribosome synthesis was restored in L-73 and LR-73, growth control revertants of one of the transformed CHO lines. The transformed lines reduced their protein synthetic rates in stationary phase either by a greater reduction in the proportion of functioning ribosomes than that seen in normal cells or by a decrease in the elongation rate of functioning ribosomes; the latter effect was not seen in the normal cells. A model for growth control of normal cells and its derangement in transformed cells is presented.  相似文献   
80.
Recent advances in high-throughput (HTP) automated mini-bioreactor systems have significantly improved development timelines for early-stage biologic programs. Automated platforms such as the ambr® 250 have demonstrated the ability, using appropriate scale-down approaches, to provide reliable estimates of process performance and product quality from bench to pilot scale, but data sets comparing to large-scale commercial processes (>10,000 L) are limited. As development moves toward late stages, specifically process characterization (PC), a qualified scale-down model (SDM) of the commercial process is a regulatory requirement as part of Biologics License Application (BLA)-enabling activities. This work demonstrates the qualification of the ambr® 250 as a representative SDM for two monoclonal antibody (mAb) commercial processes at scales >10,000 L. Representative process performance and product quality associated with each mAb were achieved using appropriate scale-down approaches, and special attention was paid to pCO2 to ensure consistent performance and product quality. Principal component analysis (PCA) and univariate equivalence testing were utilized in the qualification of the SDM, along with a statistical evaluation of process performance and product-quality attributes for comparability. The ambr® 250 can predict these two commercial-scale processes (at center-point condition) for cell-culture performance and product quality. The time savings and resource advantages to performing PC studies in a small-scale HTP system improves the potential for the biopharmaceutical industry to get products to patients more quickly.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号