首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   5篇
  128篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   12篇
  2010年   9篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1999年   12篇
  1998年   3篇
  1997年   3篇
  1996年   6篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   4篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1969年   2篇
  1957年   1篇
排序方式: 共有128条查询结果,搜索用时 53 毫秒
41.
Body mass has been shown in experimental and comparative morphological studies to have a significant effect on joint posture in major limb joints. The generalizability of experimental studies is limited by their use of small sample sizes and limited size ranges. In contrast, while comparative morphological studies often have increased sample sizes, the connection between joint posture and morphological variables is often indirect. The current study infers joint postures for a large sample of primates using an experimentally validated method, and tests whether larger primates use more extended joint postures than smaller species. Postures are inferred through the analysis of patterns of subchondral bone apparent density on the medial femoral condyle. Femora from 94 adult wild‐shot individuals of 28 species were included. Apparent density measurements were obtained from CT scans using AMIRA software, and the angular position of the anterior‐most extent of the region of maximum apparent density on the medial femoral condyle was recorded. In general, the hypothesis that larger‐bodied primates use more extended knee posture was supported, but it should be noted that considerable variation exists, particularly at small body sizes. This indicates that smaller species are less constrained by their body size, and their patterns of apparent density are consistent with a wide range of knee postures. The size‐related increase in inferred joint posture was observed in most major groups of primates, and this observation attests to the generalizability of Biewener's model that relates body size and joint posture. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
42.
43.
A phylogenetic approach to the identification of phosphoglucomutase genes   总被引:3,自引:0,他引:3  
The expanding molecular database provides unparalleled opportunities for characterizing genes and for studying groups of related genes. We use sequences drawn from the database to construct an evolutionary framework for examining the important glycolytic enzyme phosphoglucomutase (PGM). Phosphoglucomutase plays a pivotal role in the synthesis and utilization of glycogen and is present in all organisms. In humans, there are three well-described isozymes, PGMI, PGM2, and PGM3. PGM1 was cloned 5 years ago; however, repeated attempts using both immunological approaches and molecular probes designed from PGM1 have failed to isolate either PGM2 or PGM3. Using a phylogenetic strategy, we first identified 47 highly divergent prokaryotic and eukaryotic PGM-like sequences from the database. Although overall amino acid identity often fell below 20%, the relative order, position, and sequence of three structural motifs, the active site and the magnesium-- and sugar-binding sites, were conserved in all 47 sequences. The phylogenetic history of these sequences was complex and marked by duplications and translocations; two instances of transkingdom horizontal gene transfer were identified. Nonetheless, the sequences fell within six well-defined evolutionary lineages, three of which contained only prokaryotes. Of the two prokaryotic/eukaryotic lineages, one contained bacterial, yeast, slimemold, invertebrate, and vertebrate homologs to human PGM1 and the second contained likely homologs to human PGM2. Indeed, an amino acid sequence, derived from a partial human cDNA, that fell within the second cross-kingdom lineage bears several characteristics expected for PGM2. A third lineage may contain homologs to human PGM3. On a general level, our phylogenetic-based approach shows promise for the further utilization of the extensive molecular database.   相似文献   
44.
Conclusion La présentation du programme de recherches du Laboratorium voor E-kologie en Systematiek doit être comprise comme étant une partie d'un programme interdisciplinaire. Les communications qui suivent n'ont donc de sens que si elles sont mises dans un contexte plus général.  相似文献   
45.
46.
An autoimmune model for in utero immunosympathectomy of fetal rabbits was developed. Non-pregnant, female rabbits were injected with purified nerve growth factor and then bred after confirmation of high titers of anti-nerve growth factor antiserum. Fetuses were delivered and sacrificed at 27 and 31 days gestation and tissue norepinephrine concentration was used as an index of sympathetic innervation. There were significant reductions in tissue norepinephrine at both gestational ages. At 31 days there was a 32% reduction in lung norepinephrine concentration, 46% in the heart and 60% in brown adipose tissue. Corresponding reductions at 27 days were 68% for lung, 44% for heart and 49% for brown adipose tissue. Adrenal catecholamine content was unaffected but para-aortic gland catecholamines were slightly increased. Pulmonary beta adrenergic receptors showed a 30% up regulation in response to dennervation. Carcass weight was reduced 15% to 11% in the dennervated animals. These results demonstrate that dependence of organ sympathetic innervation on nerve growth factor can be demonstrated as early as 27 days gestation. This is a useful model to study the timing and dependence of organ sympathetic innervation on nerve growth factor and the factors which regulate this dependence.  相似文献   
47.
It has recently been suggested that observed levels of variation at microsatellite loci can be used to infer patterns of selection in genomes and to assess demographic history. In order to evaluate the feasibility of these suggestions it is necessary to know something about how levels of variation at microsatellite loci are expected to fluctuate due simply to stochasticity in the processes of mutation and inheritance (genetic sampling). Here we use recently derived properties of the stepwise mutation model to place confidence intervals around the variance in repeat score that is expected at mutation-drift equilibrium and outline a statistical test for whether an observed value differs significantly from expectation. We also develop confidence intervals for the time course of the buildup of variation following a complete elimination of variation, such as might be caused by a selective sweep or an extreme population bottleneck. We apply these methods to the variation observed at human Y-specific microsatellites. Although a number of authors have suggested the possibility of a very recent sweep, our analyses suggest that a sweep or extreme bottleneck is unlikely to have occurred anytime during the last approximately 74,000 years. To generate this result we use a recently estimated mutation rate for microsatellite loci of 5.6 x 10(-4) along with the variation observed at autosomal microsatellite loci to estimate the human effective population size. This estimate is 18,000, implying an effective number of 4,500 Y chromosomes. One important general conclusion to emerge from this study is that in order to reject mutation-drift equilibrium at a set of linked microsatellite loci it is necessary to have an unreasonably large number of loci unless the observed variance is far below that expected at mutation-drift equilibrium.   相似文献   
48.
49.
Sarah J. Polk 《CMAJ》2010,182(12):1332
  相似文献   
50.
The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号