首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   12篇
  2023年   4篇
  2022年   3篇
  2021年   8篇
  2020年   8篇
  2019年   10篇
  2018年   6篇
  2017年   4篇
  2016年   12篇
  2015年   15篇
  2014年   11篇
  2013年   19篇
  2012年   20篇
  2011年   18篇
  2010年   8篇
  2009年   6篇
  2008年   15篇
  2007年   4篇
  2006年   9篇
  2005年   7篇
  2004年   4篇
  2003年   6篇
  2002年   8篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1985年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有214条查询结果,搜索用时 15 毫秒
71.

Breast carcinomas (BC) are among the most frequent cancers in women. Studies on radiosensitivity and ionizing radiation response of BC cells are scarce and mainly focused on intrinsic molecular mechanisms but do not include clinically relevant features as chromosomal rearrangements important for radiotherapy. The main purpose of this study was to compare the ionizing radiation response and efficiency of repair mechanisms of human breast carcinoma cells (Cal 51) and peripheral blood lymphocytes (PBL) for different doses and radiation qualities (60Co γ-rays, 150 MeV and spread-out Bragg peak (SOBP) proton beams). The radiation response functions obtained using the conventional metaphase assay and premature chromosome condensation (PCC) technique enabled us to determine the number of chromosomal breaks at different time after irradiation. Both cytogenetic assays used confirmed the higher biological radiosensitivity for proton beams in tumor cells compared to PBL, corresponding to higher values of the linear LQ parameter α. additionally, the ratio of the LQ parameters β/α describing efficiency of the repair mechanisms, obtained for chromosome aberrations, showed higher numbers for PBL than for Cal 51 for all exposures. Similar results were observed for the ratio of PCC breaks determined directly after irradiation to that obtained 12 h later. This parameter (t0/t12) showed faster decrease of the repair efficiency with increasing LET value for Cal 51 cells. This finding supports the use of the proton therapy for breast cancer patients.

  相似文献   
72.
Induction of p21 in senescent human fibroblasts plays a key role in the inactivation of cyclin-dependent kinases and the resulting irreversible growth arrest in the early stages of cell senescence. We found that RNA-binding proteins are critical regulators of p21 during senescence. Two RNA-binding proteins, CUGBP1 and calreticulin (CRT), interact with the same nucleotide sequences within the 5' region of p21 mRNA, but have opposite effects on the translation of p21 mRNA. CUGBP1 increases translation of p21 mRNA, whereas CRT blocks translation of p21 via stabilization of a stem-loop structure within the 5' region of the p21 mRNA. CUGBP1 and CRT compete for binding to p21 mRNA and thereby the regulation of p21 translation. In senescent fibroblasts, CUGBP1 displaces CRT from the p21 mRNA and releases CRT-dependent repression of p21 translation leading to growth arrest and development of a senescent phenotype. These data present evidence that competition between RNA-binding proteins for the regulation of p21 translation determines cell fate.  相似文献   
73.
74.
75.

Background

SUP35 and SUP45 are essential genes encoding polypeptide chain release factors. However, mutants for these genes may be viable but display pleiotropic phenotypes which include, but are not limited to, nonsense suppressor phenotype due to translation termination defect. [PSI +] prion formation is another Sup35p-associated mechanism leading to nonsense suppression through decreased availability of functional Sup35p. [PSI +] differs from genuine sup35 mutations by the possibility of its elimination and subsequent re-induction. Some suppressor sup35 mutants had also been shown to undergo a reversible phenotypic switch in the opposite direction. This reversible switching had been attributed to a prion termed [ISP +]. However, even though many phenotypic and molecular level features of [ISP +] were revealed, the mechanism behind this phenomenon has not been clearly explained and might be more complex than suggested initially.

Results

Here we took a genomic approach to look into the molecular basis of the difference between the suppressor (Isp?) and non-suppressor (Isp+) phenotypes. We report that the reason for the difference between the Isp+ and the Isp? phenotypes is chromosome II copy number changes and support our finding with showing that these changes are indeed reversible by reproducing the phenotypic switch and tracking karyotypic changes. Finally, we suggest mechanisms that mediate elevation in nonsense suppression efficiency upon amplification of chromosome II and facilitate switching between these states.

Conclusions

(i) In our experimental system, amplification of chromosome II confers nonsense suppressor phenotype and guanidine hydrochloride resistance at the cost of overall decreased viability in rich medium. (ii) SFP1 might represent a novel regulator of chromosome stability, as SFP1 overexpression elevates frequency of the additional chromosome loss in our system. (iii) Prolonged treatment with guanidine hydrochloride leads to selection of resistant isolates, some of which are disomic for chromosome II.
  相似文献   
76.
77.
Ageing is accompanied by a decline in cognitive functions; along with a variety of neurobiological changes. The association between inflammation and ageing is based on complex molecular and cellular changes that we are only just beginning to understand. The hippocampus is one of the structures more closely related to electrophysiological, structural and morphological changes during ageing. In the present study we examined the effect of normal ageing and LPS-induced inflammation on astroglia-neuron interaction in the rat hippocampus of adult, normal aged and LPS-treated adult rats. Astrocytes were smaller, with thicker and shorter branches and less numerous in CA1 Str. radiatum of aged rats in comparison to adult and LPS-treated rats. Astrocyte branches infiltrated apoptotic neurons of aged and LPS-treated rats. Cellular debris, which were more numerous in CA1 of aged and LPS-treated rats, could be found apposed to astrocytes processes and were phagocytated by reactive microglia. Reactive microglia were present in the CA1 Str. Radiatum, often in association with apoptotic cells. Significant differences were found in the fraction of reactive microglia which was 40% of total in adult, 33% in aged and 50% in LPS-treated rats. Fractalkine (CX3CL1) increased significantly in hippocampus homogenates of aged and LPS-treated rats. The number of CA1 neurons decreased in aged rats. In the hippocampus of aged and LPS-treated rats astrocytes and microglia may help clearing apoptotic cellular debris possibly through CX3CL1 signalling. Our results indicate that astrocytes and microglia in the hippocampus of aged and LPS-infused rats possibly participate in the clearance of cellular debris associated with programmed cell death. The actions of astrocytes may represent either protective mechanisms to control inflammatory processes and the spread of further cellular damage to neighboring tissue, or they may contribute to neuronal damage in pathological conditions.  相似文献   
78.
79.
Cultured mesenchymal stromal cells (MSCs) from different sources represent a heterogeneous population of proliferating non-differentiated cells that contains multipotent stem cells capable of originating a variety of mesenchymal cell lineages. Despite tremendous progress in MSC biology spurred by their therapeutic potential, current knowledge on receptor and signaling systems of MSCs is mediocre. Here we isolated MSCs from the human adipose tissue and assayed their responsivity to GPCR agonists with Ca2 + imaging. As a whole, a MSC population exhibited functional heterogeneity. Although a variety of first messengers was capable of stimulating Ca2+ signaling in MSCs, only a relatively small group of cells was specifically responsive to the particular GPCR agonist, including noradrenaline. RT-PCR and immunocytochemistry revealed expression of α1B-, α2A-, and β2-adrenoreceptors in MSCs. Their sensitivity to subtype-specific adrenergic agonists/antagonists and certain inhibitors of Ca2+ signaling indicated that largely the α2A-isoform coupled to PLC endowed MSCs with sensitivity to noradrenaline. The all-or-nothing dose-dependence was characteristic of responsivity of robust adrenergic MSCs. Noradrenaline never elicited small or intermediate responses but initiated large and quite similar Ca2+ transients at all concentrations above the threshold. The inhibitory analysis and Ca2+ uncaging implicated Ca2+-induced Ca2+ release (CICR) in shaping Ca2+ signals elicited by noradrenaline. Evidence favored IP3 receptors as predominantly responsible for CICR. Based on the overall findings, we inferred that adrenergic transduction in MSCs includes two fundamentally different stages: noradrenaline initially triggers a local and relatively small Ca2+ signal, which next stimulates CICR, thereby being converted into a global Ca2+ signal.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号