全文获取类型
收费全文 | 200篇 |
免费 | 11篇 |
专业分类
211篇 |
出版年
2024年 | 1篇 |
2023年 | 4篇 |
2022年 | 4篇 |
2021年 | 9篇 |
2020年 | 8篇 |
2019年 | 10篇 |
2018年 | 6篇 |
2017年 | 4篇 |
2016年 | 12篇 |
2015年 | 15篇 |
2014年 | 12篇 |
2013年 | 19篇 |
2012年 | 20篇 |
2011年 | 19篇 |
2010年 | 8篇 |
2009年 | 6篇 |
2008年 | 15篇 |
2007年 | 4篇 |
2006年 | 9篇 |
2005年 | 3篇 |
2004年 | 2篇 |
2003年 | 6篇 |
2002年 | 8篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1994年 | 1篇 |
1983年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有211条查询结果,搜索用时 12 毫秒
71.
J. Ignacio Moreno Babu Patlolla Kerry?R. Belton Brenita?C. Jenkins Polina?V. Radchenkova Marta?A. Piva 《Bioscience reports》2012,32(6):549-557
Ccm1p is a nuclear-encoded PPR (pentatricopeptide repeat) protein that localizes into
mitochondria of Saccharomyces cerevisiae. It was first defined as an essential
factor to remove the bI4 [COB (cytochrome b) fourth intron)] and
aI4 [COX1 (cytochrome c oxidase subunit 1) fourth intron] of
pre-mRNAs, along with bI4 maturase, a protein encoded by part of bI4 and preceding exons that
removes the intronic RNA sequence that codes for it. Later on, Ccm1p was described as key to
maintain the steady-state levels of the mitoribosome small subunit RNA (15S rRNA). bI4 maturase is
produced inside the mitochondria and therefore its activity depends on the functionality of
mitochondrial translation. This report addresses the dilemma of whether Ccm1p supports bI4 maturase
activity by keeping steady-state levels of 15S rRNA or separately and directly supports bI4 maturase
activity per se. Experiments involving loss of Ccm1p, SMDC (sudden mitochondrial
deprivation of Ccm1p) and mutations in one of the PPR (pentatricopeptide repeat) motifs revealed
that the failure of bI4 maturase activity in CCM1 deletion mutants was not due to a
malfunction of the translational machinery. Both functions were found to be independent, defining
Ccm1p as a moonlighting protein. bI4 maturase activity was significantly more dependent on Ccm1p
levels than the maintenance of 15S rRNA. The novel strategy of SMDC described here allowed the study
of immediate short-term effects, before the mutant phenotype was definitively established. This
approach can be also applied for further studies on 15S rRNA stability and mitoribosome
assembly. 相似文献
72.
Iakova P Wang GL Timchenko L Michalak M Pereira-Smith OM Smith JR Timchenko NA 《The EMBO journal》2004,23(2):406-417
Induction of p21 in senescent human fibroblasts plays a key role in the inactivation of cyclin-dependent kinases and the resulting irreversible growth arrest in the early stages of cell senescence. We found that RNA-binding proteins are critical regulators of p21 during senescence. Two RNA-binding proteins, CUGBP1 and calreticulin (CRT), interact with the same nucleotide sequences within the 5' region of p21 mRNA, but have opposite effects on the translation of p21 mRNA. CUGBP1 increases translation of p21 mRNA, whereas CRT blocks translation of p21 via stabilization of a stem-loop structure within the 5' region of the p21 mRNA. CUGBP1 and CRT compete for binding to p21 mRNA and thereby the regulation of p21 translation. In senescent fibroblasts, CUGBP1 displaces CRT from the p21 mRNA and releases CRT-dependent repression of p21 translation leading to growth arrest and development of a senescent phenotype. These data present evidence that competition between RNA-binding proteins for the regulation of p21 translation determines cell fate. 相似文献
73.
Ebner-Bennatan S Patrich E Peretz A Kornilov P Tiran Z Elson A Attali B 《The Journal of biological chemistry》2012,287(33):27614-27628
Non-receptor-tyrosine kinases (protein-tyrosine kinases) and non-receptor tyrosine phosphatases (PTPs) have been implicated in the regulation of ion channels, neuronal excitability, and synaptic plasticity. We previously showed that protein-tyrosine kinases such as Src kinase and PTPs such as PTPα and PTPε modulate the activity of delayed-rectifier K(+) channels (I(K)). Here we show cultured cortical neurons from PTPε knock-out (EKO) mice to exhibit increased excitability when compared with wild type (WT) mice, with larger spike discharge frequency, enhanced fast after-hyperpolarization, increased after-depolarization, and reduced spike width. A decrease in I(K) and a rise in large-conductance Ca(2+)-activated K(+) currents (mBK) were observed in EKO cortical neurons compared with WT. Parallel studies in transfected CHO cells indicate that Kv1.1, Kv1.2, Kv7.2/7.3, and mBK are plausible molecular correlates of this multifaceted modulation of K(+) channels by PTPε. In CHO cells, Kv1.1, Kv1.2, and Kv7.2/7.3 K(+) currents were up-regulated by PTPε, whereas mBK channel activity was reduced. The levels of tyrosine phosphorylation of Kv1.1, Kv1.2, Kv7.3, and mBK potassium channels were increased in the brain cortices of neonatal and adult EKO mice compared with WT, suggesting that PTPε in the brain modulates these channel proteins. Our data indicate that in EKO mice, the lack of PTPε-mediated dephosphorylation of Kv1.1, Kv1.2, and Kv7.3 leads to decreased I(K) density and enhanced after-depolarization. In addition, the deficient PTPε-mediated dephosphorylation of mBK channels likely contributes to enhanced mBK and fast after-hyperpolarization, spike shortening, and consequent increase in neuronal excitability observed in cortical neurons from EKO mice. 相似文献
74.
Svetlana A. Romanenko Polina L. Perelman Vladimir A. Trifonov Natalia A. Serdyukova Tangliang Li Beiyuan Fu Patricia C. M. O’Brien Bee L. Ng Wenhui Nie Thomas Liehr Roscoe Stanyon Alexander S. Graphodatsky Fengtang Yang 《PloS one》2015,10(5)
The domesticated guinea pig, Cavia porcellus (Hystricomorpha, Rodentia), is an important laboratory species and a model for a number of human diseases. Nevertheless, genomic tools for this species are lacking; even its karyotype is poorly characterized. The guinea pig belongs to Hystricomorpha, a widespread and important group of rodents; so far the chromosomes of guinea pigs have not been compared with that of other hystricomorph species or with any other mammals. We generated full sets of chromosome-specific painting probes for the guinea pig by flow sorting and microdissection, and for the first time, mapped the chromosomal homologies between guinea pig and human by reciprocal chromosome painting. Our data demonstrate that the guinea pig karyotype has undergone extensive rearrangements: 78 synteny-conserved human autosomal segments were delimited in the guinea pig genome. The high rate of genome evolution in the guinea pig may explain why the HSA7/16 and HSA16/19 associations presumed ancestral for eutherians and the three syntenic associations (HSA1/10, 3/19, and 9/11) considered ancestral for rodents were not found in C. porcellus. The comparative chromosome map presented here is a starting point for further development of physical and genetic maps of the guinea pig as well as an aid for genome assembly assignment to specific chromosomes. Furthermore, the comparative mapping will allow a transfer of gene map data from other species. The probes developed here provide a genomic toolkit, which will make the guinea pig a key species to unravel the evolutionary biology of the Hystricomorph rodents. 相似文献
75.
76.
Tzatsos A Paskaleva P Lymperi S Contino G Stoykova S Chen Z Wong KK Bardeesy N 《The Journal of biological chemistry》2011,286(38):33061-33069
Sustained expression of the histone demethylase, KDM2B (Ndy1/FBXL10/JHDM1B), bypasses cellular senescence in primary mouse embryonic fibroblasts (MEFs). Here, we show that KDM2B is a conserved regulator of lifespan in multiple primary cell types and defines a program in which this chromatin-modifying enzyme counteracts the senescence-associated down-regulation of the EZH2 histone methyltransferase. Senescence in MEFs epigenetically silences KDM2B and induces the tumor suppressor miRNAs let-7b and miR-101, which target EZH2. Forced expression of KDM2B promotes immortalization by silencing these miRNAs through locus-specific histone H3 K36me2 demethylation, leading to EZH2 up-regulation. Overexpression of let-7b down-regulates EZH2, induces premature senescence, and counteracts immortalization of MEFs driven by KDM2B. The KDM2B-let-7-EZH2 pathway also contributes to the proliferation of immortal Ink4a/Arf null fibroblasts suggesting that, beyond its anti-senescence role in primary cells, this histone-modifying enzyme functions more broadly in the regulation of cellular proliferation. 相似文献
77.
78.
Exogenous selection rather than cytonuclear incompatibilities shapes asymmetrical fitness of reciprocal Arabidopsis hybrids 下载免费PDF全文
Nora Hohmann Barbara K. Mable Polina Novikova Roswitha Schmickl Alessia Guggisberg Marcus A. Koch 《Ecology and evolution》2015,5(8):1734-1745
Reciprocal crosses between species often display an asymmetry in the fitness of F1 hybrids. This pattern, referred to as isolation asymmetry or Darwin's corollary to Haldane's rule, is a general feature of reproductive isolation in plants, yet factors determining its magnitude and direction remain unclear. We evaluated reciprocal species crosses between two naturally hybridizing diploid species of Arabidopsis to assess the degree of isolation asymmetry at different postmating life stages. We found that pollen from Arabidopsis arenosa will usually fertilize ovules from Arabidopsis lyrata; the reverse receptivity being less complete. Maternal A. lyrata parents set more F1 hybrid seed, but germinate at lower frequency, reversing the asymmetry. As predicted by theory, A. lyrata (the maternal parent with lower seed viability in crosses) exhibited accelerated chloroplast evolution, indicating that cytonuclear incompatibilities may play a role in reproductive isolation. However, this direction of asymmetrical reproductive isolation is not replicated in natural suture zones, where delayed hybrid breakdown of fertility at later developmental stages, or later‐acting selection against A. arenosa maternal hybrids (unrelated to hybrid fertility, e.g., substrate adaptation) may be responsible for an excess of A. lyrata maternal hybrids. Exogenous selection rather than cytonuclear incompatibilities thus shapes the asymmetrical postmating isolation in nature. 相似文献
79.
80.
Polina D. Kotova Veronika Yu. Sysoeva Olga A. Rogachevskaja Marina F. Bystrova Alisa S. Kolesnikova Pyotr A. Tyurin-Kuzmin Julia I. Fadeeva Vsevolod A. Tkachuk Stanislav S. Kolesnikov 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2014
Cultured mesenchymal stromal cells (MSCs) from different sources represent a heterogeneous population of proliferating non-differentiated cells that contains multipotent stem cells capable of originating a variety of mesenchymal cell lineages. Despite tremendous progress in MSC biology spurred by their therapeutic potential, current knowledge on receptor and signaling systems of MSCs is mediocre. Here we isolated MSCs from the human adipose tissue and assayed their responsivity to GPCR agonists with Ca2 + imaging. As a whole, a MSC population exhibited functional heterogeneity. Although a variety of first messengers was capable of stimulating Ca2+ signaling in MSCs, only a relatively small group of cells was specifically responsive to the particular GPCR agonist, including noradrenaline. RT-PCR and immunocytochemistry revealed expression of α1B-, α2A-, and β2-adrenoreceptors in MSCs. Their sensitivity to subtype-specific adrenergic agonists/antagonists and certain inhibitors of Ca2+ signaling indicated that largely the α2A-isoform coupled to PLC endowed MSCs with sensitivity to noradrenaline. The all-or-nothing dose-dependence was characteristic of responsivity of robust adrenergic MSCs. Noradrenaline never elicited small or intermediate responses but initiated large and quite similar Ca2+ transients at all concentrations above the threshold. The inhibitory analysis and Ca2+ uncaging implicated Ca2+-induced Ca2+ release (CICR) in shaping Ca2+ signals elicited by noradrenaline. Evidence favored IP3 receptors as predominantly responsible for CICR. Based on the overall findings, we inferred that adrenergic transduction in MSCs includes two fundamentally different stages: noradrenaline initially triggers a local and relatively small Ca2+ signal, which next stimulates CICR, thereby being converted into a global Ca2+ signal. 相似文献