首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   12篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   9篇
  2020年   8篇
  2019年   10篇
  2018年   6篇
  2017年   4篇
  2016年   12篇
  2015年   15篇
  2014年   12篇
  2013年   19篇
  2012年   20篇
  2011年   19篇
  2010年   8篇
  2009年   6篇
  2008年   15篇
  2007年   4篇
  2006年   9篇
  2005年   3篇
  2004年   2篇
  2003年   6篇
  2002年   8篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有211条查询结果,搜索用时 18 毫秒
51.
52.
53.
Primula vulgaris exhibits flower colour polymorphism in the eastern part of its range, especially pronounced on the NE coast of the Black Sea. This polymorphism in the Caucasian populations has been taxonomically described and some segregated species are listed as rare and endangered. We used sequence variation in two chloroplast noncoding regions (trnL–trnF and rpll32–trnL) and the complete nuclear internal transcribed spacer (ITS) of ribosomal DNA region to investigate correspondence between flower colour and geographical distribution of both nuclear and chloroplast haplotypes. It appears that variability in these DNA regions does not correlate with flower colour, being, however, clearly structured geographically. We used nested clade analysis to explore this geographical structure. It seems that the territory of the Colchis refugium on the E coast of the Black Sea contains both the highest flower colour and haplotype diversities. The results suggest that common primroses colonized the NE coast of the Black Sea from this refugium, spreading along the coast westward. At the same time, the analysis of ITS haplotypes indicates that P. vulgaris colonized the Crimea from NW Anatolia. This makes it clear that no segregated species can be recognized within flower colour polymorphic P. vulgaris in the Caucasus region. However, its phylogeography needs further detailed study on a broader scale.  相似文献   
54.
β-d-Arabinofuranose 1,2,5-orthobenzoates with 3-O-acetyl, 3-O-benzoyl, and 3-O-chloroacetyl groups were prepared in an efficient manner starting from readily available crystalline methyl 2,3,5-tri-O-benzoyl-α-d-arabinofuranoside, and ring-opening reactions of these compounds with O- and S-nucleophiles were studied. Optimized conditions leading to the formation of the respective monosaccharide adducts (up to 96% isolated yields) and to α-(1→5)-linked disaccharide thioglycosides with 5'-OH unprotected (up to 30% isolated yields) were found. Basing on these results, a novel approach for effective differentiation of 3,5-diol system and 2-hydroxy group in arabinofuranose thioglycosides was proposed. The selectively protected derivatives prepared are valuable building blocks for the assembly of linear and branched oligoarabinofuranosides.  相似文献   
55.
β-d-Arabinofuranose 1,2,5-orthobenzoates with 3-O-acetyl, 3-O-benzoyl, and 3-O-chloroacetyl groups were prepared in an efficient manner starting from readily available crystalline methyl 2,3,5-tri-O-benzoyl-α-d-arabinofuranoside, and ring-opening reactions of these compounds with O- and S-nucleophiles were studied. Optimized conditions leading to the formation of the respective monosaccharide adducts (up to 96% isolated yields) and to α-(1→5)-linked disaccharide thioglycosides with 5′-OH unprotected (up to 30% isolated yields) were found. Basing on these results, a novel approach for effective differentiation of 3,5-diol system and 2-hydroxy group in arabinofuranose thioglycosides was proposed. The selectively protected derivatives prepared are valuable building blocks for the assembly of linear and branched oligoarabinofuranosides.  相似文献   
56.
57.
Highlights? Epigenetic alterations cause hepatic steatosis in old mice ? Increase of enzymes of TG synthesis is involved in age-related steatosis ? p300-C/EBPα/β complexes cause activation of enzymes of TG synthesis ? The p300-C/EBP pathway is activated in patients with nonalcoholic fatty liver disease  相似文献   
58.
59.
Contractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils. As reported here, this hypothesis was corroborated by sequential extraction and analysis of cell wall polymers that are retained by cellulose microfibrils in tension wood and normal wood of hybrid aspen (Populus tremula × Populus tremuloides). β-(1→4)-Galactan and type II arabinogalactan were the main large matrix polymers retained by cellulose microfibrils that were specifically found in tension wood. Xyloglucan was detected mostly in oligomeric form in the alkali-labile fraction and was enriched in tension wood. β-(1→4)-Galactan and rhamnogalacturonan I backbone epitopes were localized in the gelatinous cell wall layer. Type II arabinogalactans retained by cellulose microfibrils had a higher content of (methyl)glucuronic acid and galactose in tension wood than in normal wood. Thus, β-(1→4)-galactan and a specialized form of type II arabinogalactan are trapped by cellulose microfibrils specifically in tension wood and, thus, are the main candidate polymers for the generation of tensional stresses by the entrapment mechanism. We also found high β-galactosidase activity accompanying tension wood differentiation and propose a testable hypothesis that such activity might regulate galactan entrapment and, thus, mechanical properties of cell walls in tension wood.Contractile cell walls found in plant organs and tissues such as tendrils, contractile roots, and tension wood (TW) have remarkable functions and properties. Their traits have been most intensely studied in TW of hardwoods, where they provide negative gravitropic response capacities to stems with secondary growth, as recently reviewed by Mellerowicz and Gorshkova (2012). These properties are conferred by TW fibers, which in many species contain a so-called gelatinous cell wall layer (G-layer; Norberg and Meier, 1966; Clair et al., 2008). G-layers are formed following the deposition of xylan-type secondary cell wall layer(s) and, thus, can be considered tertiary layers (Wardrop and Dadswell, 1948). They are almost or completely devoid of xylan and lignin and have very high cellulose contents (up to 85%). However, several other polymers appear to be present in TW G-layers, according to recent chemical analyses of isolated G-layers (Nishikubo et al., 2007; Kaku et al., 2009) and immunohistochemical labeling of TW sections (Arend, 2008; Bowling and Vaughn, 2008). Notably, xyloglucan (XG) has been found in G-layers of poplar (Populus spp.) TW (Nishikubo et al., 2007) and at the boundary between secondary cell wall layers (S-layers) and G-layers (Baba et al., 2009; Sandquist et al., 2010). It is also important for tension creation (Baba et al., 2009). However, it is not detectable in mature G-layers by monoclonal antibodies or XG-binding modules (Nishikubo et al., 2007; Baba et al., 2009; Sandquist et al., 2010).Structurally similar G-layers have been also identified in phloem fibers in many fibrous crops, such as flax (Linum usitatissimum), hemp (Cannabis sativa), and ramie (Boehmeria nivea; Gorshkova et al., 2012). These fibers occur in bundles that can be isolated for biochemical analysis. G-layers in fibers from diverse sources have a very similar structure, being largely composed of cellulose (with axial microfibril orientation, high degrees of crystallinity, and large crystallite sizes) lacking xylan and lignin (Mellerowicz et al., 2001; Pilate et al., 2004; Gorshkova et al., 2010, 2012) and having high water contents (Schreiber et al., 2010). In phloem fibers, the G-layers become very prominent, reaching thicknesses up to 15 µm and occupying over 90% of the cell wall’s total cross-sectional areas (Crônier et al., 2005). Pectic β-(1→4)-galactan with complex structures has been shown to be the major matrix polysaccharide of isolated phloem fibers in flax (Gorshkova et al., 2004; Gorshkova and Morvan, 2006; Gurjanov et al., 2007). Some of it is so strongly retained within cellulose that it cannot be extracted by concentrated alkali and can only be obtained after cellulose dissolution (Gurjanov et al., 2008). Such galactan, therefore, is a prime candidate for a polymer entrapped by cellulose microfibrils during crystallization that could substantially contribute to the contractile properties of cellulose in G-layers, according to recently formulated models (Mellerowicz et al., 2008; Mellerowicz and Gorshkova 2012). Furthermore, Roach et al. (2011) have shown that trimming of β-(1→4)-galactan by β-galactosidase is important for final cellulose crystallization, the formation of G-layer structure, and, hence, the stem’s mechanical properties.There is also immunocytochemical evidence for the presence of β-(1→4)-galactan and type II arabinogalactan (AG-II) in G-layers of TW fibers (Arend, 2008; Bowling and Vaughn, 2008). In addition, high-Mr branched galactans have been isolated from TW of Fagus sylvestris (Meier, 1962) and Fagus grandifolia (Kuo and Timell, 1969), with estimated degrees of polymerization (DP) of approximately 300 and complex structure, probably including both β-(1→4) and β-(1→6) linkages, although their exact nature remains unknown. Furthermore, Gal has been identified as one of the major sugars after Glc and Xyl in hydrolysates of isolated Populus spp. G-layers (Furuya et al., 1970; Nishikubo et al., 2007), and the Gal content of cell walls is a proposed indicator of the extent of TW development in beech (Fagus spp.; Ruel and Barnoud, 1978). However, subsequent linkage analyses identified only 2- and 3,6-linked Gal in poplar TW G-layers (Nishikubo et al., 2007), while in flax fibers, 4-linked Gal is the main component (Gorshkova et al., 1996, 2004; Gurjanov et al., 2007, 2008). Thus, the type(s) of galactans present in poplar TW remains unclear, and the galactans have not been shown previously either to have a rhamnogalacturonan-I (RG-I) backbone or to be strongly retained by cellulose microfibrils, as demonstrated for flax gelatinous fibers.To improve our understanding of cell wall properties in TW and their contraction mechanism, in the study presented here, we tested aspects of the recently proposed entrapment model (Mellerowicz et al., 2008; Mellerowicz and Gorshkova, 2012). According to this model, contraction is driven by the formation of larger cellulose structures, sometimes called macrofibrils, via interactions of cellulose microfibrils in the G-layer with each other and forming inclusions containing matrix polymers. This would induce tension within cellulose through the stretching of microfibrils required to surround the inclusions. The model is compatible with available data on the structure and action of gelatinous walls, but the main assumption, that polymers are trapped inside crystalline cellulose, such as that found in flax, has not been tested previously. Therefore, we compared matrix polymers retained by cellulose microfibrils in normal wood (NW) and TW of the model hardwood species hybrid aspen (Populus tremula × Populus tremuloides) that forms TW with gelatinous fibers. For this purpose, we used a combination of sequential cell wall extractions, similar to those used previously to characterize flax gelatinous fibers (Gurjanov et al., 2008), followed by fractionation of polymers by size-exclusion chromatography, immunological analyses, and oligosaccharide profiling by polysaccharide analysis using carbohydrate gel electrophoresis (PACE). The results reveal the main polymers of cellulose-retained fractions and key differences between NW and TW. Comparison of our results and previous findings also indicates that there are both similarities and differences in the constitution of gelatinous fibers in aspen and flax. An updated model of the contractile G-layer of TW fibers based on the data is presented.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号