首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2009年   2篇
  2007年   2篇
  2005年   3篇
  2003年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有23条查询结果,搜索用时 31 毫秒
21.
Crustacean-SIFamide (GYRKPPFNGSIFamide) is a novel neuropeptide that was recently isolated from crayfish nervous tissue. We mapped the localisation of this peptide in the median brain and eyestalk neuropils of the marbled crayfish (Marmorkrebs), a parthenogenetic crustacean. Our experiments showed that crustacean-SIFamide is strongly expressed in all major compartments of the crayfish brain, including all three optic neuropils, the lateral protocerebrum with the hemiellipsoid body, and the medial protocerebrum with the central complex. These findings imply a role of this peptide in visual processing already at the level of the lamina but also at the level of the deeper relay stations. Immunolabelling is particularly strong in the accessory lobes and the deutocerebral olfactory lobes that receive a chemosensory input from the first antennae. Most cells of the olfactory globular tract, a projection neuron pathway that links deuto- and protocerebrum, are labelled. This pathway plays a central role in conveying tactile and olfactory stimuli to the lateral protocerebrum, where this input converges with optic information. Weak labelling is also present in the tritocerebrum that is associated with the mechanosensory second antennae. Taken together, we suggest an important role of crustacean-SIFamidergic neurons in processing high-order, multimodal input in the crayfish brain.  相似文献   
22.

Background

The identification of polymorphisms and/or genes responsible for an organism's radiosensitivity increases the knowledge about the cell cycle and the mechanism of the phenomena themselves, possibly providing the researchers with a better understanding of the process of carcinogenesis.

Aim

The aim of the study was to develop a data analysis strategy capable of discovering the genetic background of radiosensitivity in the case of small sample size studies.

Results

Among many indirect measures of radiosensitivity known, the level of radiation-induced chromosomal aberrations was used in the study. Mathematical modelling allowed the transformation of the yield-time curve of radiation-induced chromosomal aberrations into the exponential curve with limited number of parameters, while Gaussian mixture models applied to the distributions of these parameters provided the criteria for mouse strain classification. A detailed comparative analysis of genotypes between the obtained subpopulations of mice followed by functional validation provided a set of candidate polymorphisms that might be related to radiosensitivity. Among 1857 candidate relevant SNPs, that cluster in 28 genes, eight SNPs were detected nonsynonymous (nsSNP) on protein function. Two of them, rs48840878 (gene Msh3) and rs5144199 (gene Cc2d2a), were predicted as having increased probability of a deleterious effect. Additionally, rs48840878 is capable of disordering phosphorylation with 14 PKs. In silico analysis of candidate relevant SNP similarity score distribution among 60 CGD mouse strains allowed for the identification of SEA/GnJ and ZALENDE/EiJ mouse strains (95.26% and 86.53% genetic consistency respectively) as the most similar to radiosensitive subpopulatio

Conclusions

A complete step-by-step strategy for seeking the genetic signature of radiosensitivity in the case of small sample size studies conducted on mouse models was proposed. It is shown that the strategy, which is a combination of mathematical modelling, statistical analysis and data mining methodology, allows for the discovery of candidate polymorphisms which might be responsible for radiosensitivity phenomena.
  相似文献   
23.
BackgroundAdverse birth outcomes are major causes of morbidity and mortality during childhood and associate with a higher risk of noncommunicable diseases in adult life. Maternal periconception and antenatal nutrition, mostly focusing on single nutrients or foods, has been shown to influence infant birth outcomes. However, evidence on whole diet that considers complex nutrient and food interaction is rare and conflicting. We aim to elucidate the influence of whole-diet maternal dietary inflammatory potential and quality during periconceptional and antenatal periods on birth outcomes.Methods and findingsWe harmonized and pooled individual participant data (IPD) from up to 24,861 mother–child pairs in 7 European mother–offspring cohorts [cohort name, country (recruitment dates): ALSPAC, UK (1 April 1991 to 31 December 1992); EDEN, France (27 January 2003 to 6 March 2006); Generation R, the Netherlands (1 April 2002 to 31 January 2006); Lifeways, Ireland (2 October 2001 to 4 April 2003); REPRO_PL, Poland (18 September 2007 to 16 December 2011); ROLO, Ireland (1 January 2007 to 1 January 2011); SWS, United Kingdom (6 April 1998 to 17 December 2002)]. Maternal diets were assessed preconceptionally (n = 2 cohorts) and antenatally (n = 7 cohorts). Maternal dietary inflammatory potential and quality were ranked using the energy-adjusted Dietary Inflammatory Index (E-DII) and Dietary Approaches to Stop Hypertension (DASH) index, respectively. Primary outcomes were birth weight and gestational age at birth. Adverse birth outcomes, i.e., low birth weight (LBW), macrosomia, small-for-gestational-age (SGA), large-for-gestational-age (LGA), preterm and postterm births were defined according to standard clinical cutoffs. Associations of maternal E-DII and DASH scores with infant birth outcomes were assessed using cohort-specific multivariable regression analyses (adjusted for confounders including maternal education, ethnicity, prepregnancy body mass index (BMI), maternal height, parity, cigarettes smoking, and alcohol consumption), with subsequent random-effects meta-analyses.Overall, the study mothers had a mean ± SD age of 29.5 ± 4.9 y at delivery and a mean BMI of 23.3 ± 4.2 kg/m2. Higher pregnancy DASH score (higher dietary quality) was associated with higher birth weight [β(95% CI) = 18.5(5.7, 31.3) g per 1-SD higher DASH score; P value = 0.005] and head circumference [0.03(0.01, 0.06) cm; P value = 0.004], longer birth length [0.05(0.01, 0.10) cm; P value = 0.010], and lower risk of delivering LBW [odds ratio (OR) (95% CI) = 0.89(0.82, 0.95); P value = 0.001] and SGA [0.87(0.82, 0.94); P value < 0.001] infants. Higher maternal prepregnancy E-DII score (more pro-inflammatory diet) was associated with lower birth weight [β(95% CI) = −18.7(−34.8, −2.6) g per 1-SD higher E-DII score; P value = 0.023] and shorter birth length [−0.07(−0.14, −0.01) cm; P value = 0.031], whereas higher pregnancy E-DII score was associated with a shorter birth length [−0.06(−0.10, −0.01) cm; P value = 0.026] and higher risk of SGA [OR(95% CI) = 1.18(1.11, 1.26); P value < 0.001]. In male, but not female, infants higher maternal prepregnancy E-DII was associated with lower birth weight and head circumference, shorter birth length, and higher risk of SGA (P-for-sex-interaction = 0.029, 0.059, 0.104, and 0.075, respectively). No consistent associations were observed for maternal E-DII and DASH scores with gestational age, preterm and postterm birth, or macrosomia and LGA. Limitations of this study were that self-reported dietary data might have increased nondifferential measurement error and that causality cannot be claimed definitely with observational design.ConclusionsIn this cohort study, we observed that maternal diet that is of low quality and high inflammatory potential is associated with lower offspring birth size and higher risk of offspring being born SGA in this multicenter meta-analysis using harmonized IPD. Improving overall maternal dietary pattern based on predefined criteria may optimize fetal growth and avert substantial healthcare burden associated with adverse birth outcomes.

In this cohort analysis, Ling-Wei Chen and colleagues explore associations of maternal dietary patterns with offspring birth outcomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号