首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   9篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2012年   4篇
  2011年   3篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
  1954年   1篇
排序方式: 共有63条查询结果,搜索用时 328 毫秒
11.
Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska''s interior. The water column CH4 oxidation potential for these shallow (∼2 m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.  相似文献   
12.
In larval sea lampreys (Petromyzon marinus), a small, relatively inconspicuous olfactory organ sac contains small, densely packed olfactory receptor neurons and sustentacular cells. During metamorphosis, the larval organ transforms into a prominent lamellar structure with large distinct olfactory epithelial cells that is characteristic of the adult lamprey. In the present study, scanning electron microscopy and light microscopy are used to examine changes during the seven stages (1–7) of metamorphosis. The magnitude of growth over the course of metamorphosis is evident from the doubling of the relative weight of the nasal sac. During early metamorphosis (stages 1 and 2), the larval olfactory organ enlarges, and by stage 3 specific adult structures begin to form, namely a nasal valve between the nasal tube and the organ, lamellar folds, and diverticuli of the accessory olfactory organ. Subsequent development involves widening of the cells lining the lamellar folds to the form characteristic of postmetamorphic lampreys. Although the cells in the troughs initially retain numerical density values that are significantly higher than those on the lamellar surfaces, by stage 7 values decline both in troughs and along lamellar surfaces to those observed in adults. These results show that although expansion of the olfactory organ is ongoing throughout metamorphosis, remodeling occurs early (by stage 3). This timing provides space for extensive olfactory receptor neuron neurogenesis and differentiation and correlates with the transformation of some organs that were previously examined. This is the first report in any species of olfactory receptor neuron zonation based on morphometric characteristics. J. Morphol. 231:41–52, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
13.
14.
Methane release from seafloor sediments is moderated, in part, by the anaerobic oxidation of methane (AOM) performed by consortia of archaea and bacteria. These consortia occur as isolated cells and aggregates within the sulfate-methane transition (SMT) of diffusion and seep-dominant environments. Here we report on a new SMT setting where the AOM consortium occurs as macroscopic pink to orange biofilms within subseafloor fractures. Biofilm samples recovered from the Indian and northeast Pacific Oceans had a cellular abundance of 10(7) to 10(8) cells cm(-3). This cell density is 2 to 3 orders of magnitude greater than that in the surrounding sediments. Sequencing of bacterial 16S rRNA genes indicated that the bacterial component is dominated by Deltaproteobacteria, candidate division WS3, and Chloroflexi, representing 46%, 15%, and 10% of clones, respectively. In addition, major archaeal taxa found in the biofilm were related to the ANME-1 clade, Thermoplasmatales, and Desulfurococcales, representing 73%, 11%, and 10% of archaeal clones, respectively. The sequences of all major taxa were similar to sequences previously reported from cold seep environments. PhyloChip microarray analysis detected all bacterial phyla identified by the clone library plus an additional 44 phyla. However, sequencing detected more archaea than the PhyloChip within the phyla of Methanosarcinales and Desulfurococcales. The stable carbon isotope composition of the biofilm from the SMT (-35 to -43‰) suggests that the production of the biofilm is associated with AOM. These biofilms are a novel, but apparently widespread, aggregation of cells represented by the ANME-1 clade that occur in methane-rich marine sediments.  相似文献   
15.
High frequency callus formation from maize protoplasts   总被引:3,自引:0,他引:3  
Summary A solid feeder layer technique was developed to improve callus formation of Black Mexican Sweet maize (Zea mays L.) suspension culture protoplasts. Protoplasts were plated in 0.2 ml liquid media onto a cellulose nitrate filter on top of agarose-solidified media in which Black Mexican Sweet suspension feeder cells were embedded. Callus colony formation frequencies exceeding 10% of the plated protoplasts were obtained for densities of 103–105 protoplasts/ 0.2 ml, which was 100- to 1,000-fold higher than colony formation frequencies obtained for conventional protoplast plating methods such as liquid culture or embedding in agarose media. Compared with conventional methods, the feeder layer method gave higher colony formation frequencies for three independently maintained Black Mexican Sweet suspension lines. Differences among the three lines indicated that colony formation frequencies might also be influenced by the suspension culture maintenance regime and length of time on different 2,4-dichlorophenoxyacetic acid concentrations. The callus colony formation frequency reported is an essential prerequesite for recovering rare mutants or genetically transformed maize protoplasts.  相似文献   
16.
A pair of yeast strains of opposite mating type was constructed to contain polymorphisms at three loci on the mitochondrial genome--the 21 S rRNA gene, var1, and cob--such that parental and recombinant forms of these genes could be easily detected by Southern blot analysis. These polymorphisms were used to measure in a single cross gene conversions at the 21 S rRNA and var1 loci and a reciprocal recombination at cob. For all three loci, recombination initiates at about the same time, 4 to 6 h after mixing cells, and increases with similar kinetics over a 24-h period. The segregation of parental and recombinant forms of these genes was then followed by pedigree analysis. The results, which show a high variance in the distribution of parental and recombinant forms of all three genes in cells derived from both the first bud and the mother zygote, are consistent with the segregation of a small number of mitochondrial DNA molecules from the zygote to diploid buds. Based on these results and previous experiments of this type, a limited "zone of mixing" of parental mitochondrial DNA molecules probably exists in the zygote. The extent of sampling from this zone, together with the intrinsic properties of the recombination events themselves, is likely to determine the observed pattern of recombination of mitochondrial DNA sequences at the population level.  相似文献   
17.
A temperature-sensitive mutation in Escherichia coli K-12 was shown to affect acetyl coenzyme A carboxylase and to map at min 63. This site is designated fabE.  相似文献   
18.
Methane (CH(4)) flux to the atmosphere is mitigated via microbial CH(4) oxidation in sediments and water. As arctic temperatures increase, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is important to predicting future CH(4) emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), and pyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C, and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH(4) oxidation activity was measured in microcosm incubations containing sediments at all temperatures, with the highest CH(4) oxidation potential of 37.5 μmol g(-1) day(-1) in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and of the 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in (13)C-labeled DNA obtained by SIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisition from CH(4) in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature. Methylotrophs were also abundant in the microbial community that derived carbon from CH(4), especially in the deeper sediments (depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R = 0.82) with the relative abundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophic communities in arctic lake sediments respond to temperature variations.  相似文献   
19.
20.
Two experiments were conducted to test the effects of feeding broiler litter, either directly in the diet or indirectly through pasture-fertilization, to beef cattle on the incidence of Salmonella typhimurium (S) and Escherichia coli O157:H7 (EC) contamination of carcasses and ground beef. In Experiment 1, beef cows (n = 32) were allotted either ad libitum access to grass hay or a formulated diet (80% deep-stacked broiler litter and 20% corn). In Experiment 2, beef cows (n = 32) were assigned to graze on pastures fertilized with a commercial fertilizer or fresh broiler litter. Cows in Experiment 1 were harvested following a 56-d feeding period; whereas, cows in Experiment 2 were harvested after 5, 10, 20, and 40 d of grazing pastures. All samples of muscle, purge, and ground beef were culture-negative for S and EC, suggesting that beef cattle may consume properly handled deep-stacked broiler litter, or pastures fertilized with fresh litter, without increasing the likelihood of carcass/meat contamination with S and (or) EC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号