首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   815篇
  免费   51篇
  2021年   7篇
  2020年   5篇
  2019年   9篇
  2018年   9篇
  2016年   7篇
  2015年   26篇
  2014年   21篇
  2013年   42篇
  2012年   48篇
  2011年   35篇
  2010年   30篇
  2009年   26篇
  2008年   31篇
  2007年   36篇
  2006年   31篇
  2005年   34篇
  2004年   34篇
  2003年   18篇
  2002年   30篇
  2001年   30篇
  2000年   24篇
  1999年   15篇
  1998年   8篇
  1997年   13篇
  1996年   5篇
  1994年   5篇
  1992年   12篇
  1991年   12篇
  1990年   15篇
  1989年   10篇
  1988年   14篇
  1987年   12篇
  1986年   11篇
  1985年   10篇
  1984年   7篇
  1983年   14篇
  1982年   13篇
  1981年   15篇
  1980年   9篇
  1979年   10篇
  1978年   8篇
  1977年   8篇
  1976年   8篇
  1974年   6篇
  1973年   6篇
  1972年   10篇
  1971年   17篇
  1968年   6篇
  1967年   4篇
  1965年   5篇
排序方式: 共有866条查询结果,搜索用时 62 毫秒
91.
Penetratin is a short, basic cell-penetrating peptide able to induce cellular uptake of a vast variety of large, hydrophilic cargos. We have reassessed the highly controversial issue of direct permeation of the strongly cationic peptide across negatively charged lipid membranes. Confocal laser scanning microscopy on rhodamine-labeled giant vesicles incubated with carboxyfluorescein-labeled penetratin yielded no evidence of transbilayer movement, in contradiction to previously reported results. Confocal fluorescence spectroscopy on black lipid membranes confirmed this finding, which was also not affected by application of a transmembrane electric potential difference. A novel dialysis assay based on tryptophan absorbance and fluorescence spectroscopy demonstrated that the permeability of small and large unilamellar vesicles to penetratin is <10(-13) m/s. Taken together, the results show that penetratin is not capable of overcoming model membrane systems irrespective of the bilayer curvature or the presence of a transmembrane voltage. Thus, direct translocation across the hydrophobic core of the plasma membrane cannot account for the efficient uptake of penetratin into live cells, which is in accord with recent in vitro studies underlining the importance of endocytosis in the internalization process of cationic cell-penetrating peptides.  相似文献   
92.
Zea CJ  Pohl NL 《Biopolymers》2005,79(2):106-113
The glycogen synthase found in Pyrococcus furiosus is a hyperthermophilic biocatalyst that transfers the glucose portion of nucleotide-diphosphoglucose onto a growing carbohydrate biopolymer chain at 80 degrees C. In contrast to the mesophilic rabbit muscle glycogen synthase, the biocatalyst from P. furiosus possesses unusually broad nucleotide tolerance. The enzyme accepts all four common glucose-containing nucleotide-diphosphosugars: ADP-glucose, GDP-glucose, dTDP-glucose, and UDP-glucose. Using an electrospray ionization-mass spectroscopy (ESI-MS) assay, we determined the K(M) and Vmax for GDP-glucose to be 3.9 +/- 0.6 mM and 0.243 +/- 0.009 mM/min, and for dTDP-glucose to be 4.0 +/- 0.5 mM and 0.216 +/- 0.008 mM/min. A related nucleotide sugar, UDP-galactose, was not a reactive substrate, but was instead a competitive inhibitor with a Ki of 17 +/- 2 mM. The glycogen synthase from P. furiosus was shown not to have phosphorylase activity. The DeltaDeltaG of substrate binding was compared between the mesophilic rabbit muscle and the hyperthermophilic P. furiosus glycogen synthase to dissect any differences in sugar nucleotide recognition strategies at elevated temperatures. Both biocatalysts were shown to gain most of their substrate affinity through electrostatic interactions between the enzyme and the alpha-phosphate.  相似文献   
93.
Gap junction intercellular communication (GJIC) plays a significant role in the vascular system. Regulation of GJIC is a dynamic process, with alterations in connexin (Cx) protein expression and post-translational modification as contributing mechanisms. We hypothesized that the endothelial autacoid nitric oxide (NO) would reduce dye coupling in human umbilical vein endothelial cells (HUVECs). In our subsequent experiments, we sought to isolate the specific Cx isoform(s) targeted by NO or NO-activated signaling pathways. Since HUVEC cells variably express three Cx (Cx37, Cx40, and Cx43), this latter aim required the use of transfected HeLa cells (HeLaCx37, HeLaCx43), which do not express Cx proteins in their wild type form. Dye coupling was measured by injecting fluorescent dye (e.g., Alexa Fluor 488) into a single cell and determining the number of stained adjacent cells. Application of the NO donor SNAP (2 microM, 20 min) reduced dye coupling in HUVEC by 30%. In HeLa cells, SNAP did not reduce dye transfer of cells expressing Cx43, but decreased the dye transfer from Cx37-expressing cells to Cx43-expressing cells by 76%. The effect of SNAP on dye coupling was not mediated via cGMP. In contrast to its effect on dye coupling, SNAP had no effect on electrical coupling, measured by a double patch clamp in whole cell mode. Our results demonstrate that NO inhibits the intercellular transfer of small molecules by a specific influence on Cx37, suggesting a potential role of NO in controlling certain aspects of vascular GJIC.  相似文献   
94.
Using transmission electron microscopy with glutaraldehyde and osmium tetroxide as chemical fixatives, hatshaped ascospores with two brims each were uncovered in the yeast Ambrosiozyma platypodis. This is the first report on such structures.  相似文献   
95.
Lorentzen E  Siebers B  Hensel R  Pohl E 《Biochemistry》2005,44(11):4222-4229
The glycolytic enzyme fructose-1,6-bisphosphate aldolase (FBPA) catalyzes the reversible cleavage of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Catalysis of Schiff base forming class I FBPA relies on a number of intermediates covalently bound to the catalytic lysine. Using active site mutants of FBPA I from Thermoproteus tenax, we have solved the crystal structures of the enzyme covalently bound to the carbinolamine of the substrate fructose 1,6-bisphosphate and noncovalently bound to the cyclic form of the substrate. The structures, determined at a resolution of 1.9 A and refined to crystallographic R factors of 0.148 and 0.149, respectively, represent the first view of any FBPA I in these two stages of the reaction pathway and allow detailed analysis of the roles of active site residues in catalysis. The active site geometry of the Tyr146Phe FBPA variant with the carbinolamine intermediate supports the notion that in the archaeal FBPA I Tyr146 is the proton donor catalyzing the conversion between the carbinolamine and Schiff base. Our structural analysis furthermore indicates that Glu187 is the proton donor in the eukaryotic FBPA I, whereas an aspartic acid, conserved in all FBPA I enzymes, is in a perfect position to be the general base facilitating carbon-carbon cleavage. The crystal structure of the Trp144Glu, Tyr146Phe double-mutant substrate complex represents the first example where the cyclic form of beta-fructose 1,6-bisphosphate is noncovalently bound to FBPA I. The structure thus allows for the first time the catalytic mechanism of ring opening to be unraveled.  相似文献   
96.
97.
Two extracellular endo-beta-1,4-mannanases, MAN I (major form) and MAN II (minor form), were purified to electrophoretic homogeneity from a locust bean gum-spent culture fluid of Aspergillus fumigatus IMI 385708 (formerly Thermomyces lanuginosus IMI 158749). Molecular weights of MAN I and MAN II estimated by SDS-PAGE were 60 and 63 kDa, respectively. IEF afforded several glycoprotein bands with pI values in the range of 4.9-5.2 for MAN I and 4.75-4.9 for MAN II, each exhibiting enzyme activity. MAN I as well as MAN II showed highest activity at pH 4.5 and 60 degrees C and were stable in the pH range 4.5-8.5 and up to 55 degrees C. In accordance with the ability of the enzymes to catalyze transglycosylation reactions, 1H NMR spectroscopy of reaction products generated from mannopentaitol confirmed the retaining character of both enzymes. Both MAN I and MAN II exhibited essentially identical kinetic parameters for polysaccharides and a similar hydrolysis pattern of various oligomeric and polymeric substrates. Both beta-mannanases contained identical internal amino acid sequence corresponding to glycoside hydrolase family 5 and also a cellulose-binding module. These data suggested that both MAN I and MAN II are products of the same gene differing in posttranslational modification. Indeed, the corresponding gene was identified within the recently sequenced Aspergillus fumigatus genome (http://sanger.ac.uk/Projects/A_fumigatus/).  相似文献   
98.
The distribution of 3-hydroxy oxylipins in Saturnispora saitoi was mapped using immunofluorescence microscopy. Fluorescence was observed on aggregating ascospores, indicating the presence of 3-hydroxy oxylipins on the surface or between ascospores. The oxylipin was identified as 3-hydroxy 9:1 using gas chromatography mass spectrometry. Furthermore, ultrastructural studies using scanning and transmission electron microscopy on ascospores revealed a clear equatorial ledge surrounding oval-shaped ascospores.  相似文献   
99.
The crystal structures of the oxidized and reduced forms of cytochrome c″ from Methylophilus methylotrophus were solved from X-ray synchrotron data to atomic resolution. The overall fold of the molecule in the two redox states is very similar and is comparable to that of the oxygen-binding protein from the purple phototrophic bacterium Rhodobacter sphaeroides. However, significant modifications occur near the haem group, in particular the detachment from axial binding of His95 observed upon reduction as well as the adoption of different conformations of some protonatable residues that form a possible proton path from the haem pocket to the protein surface. These changes are associated with the previously well characterized redox-Bohr behaviour of this protein. Furthermore they provide a model for one of the presently proposed mechanisms of proton translocation in the much more complex protein cytochrome c oxidase.  相似文献   
100.
Methanobactin (mb) is a novel chromopeptide that appears to function as the extracellular component of a copper acquisition system in methanotrophic bacteria. To examine this potential physiological role, and to distinguish it from iron binding siderophores, the spectral (UV–visible absorption, circular dichroism, fluorescence, and X-ray photoelectron) and thermodynamic properties of metal binding by mb were examined. In the absence of Cu(II) or Cu(I), mb will bind Ag(I), Au(III), Co(II), Cd(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(VI), or Zn(II), but not Ba(II), Ca(II), La(II), Mg(II), and Sr(II). The results suggest metals such as Ag(I), Au(III), Hg(II), Pb(II) and possibly U(VI) are bound by a mechanism similar to Cu, whereas the coordination of Co(II), Cd(II), Fe(III), Mn(II), Ni(II) and Zn(II) by mb differs from Cu(II). Consistent with its role as a copper-binding compound or chalkophore, the binding constants of all the metals examined were less than those observed with Cu(II) and copper displaced other metals except Ag(I) and Au(III) bound to mb. However, the binding of different metals by mb suggests that methanotrophic activity also may play a role in either the solubilization or immobilization of many metals in situ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号