首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   17篇
  国内免费   1篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   6篇
  2017年   3篇
  2016年   5篇
  2015年   17篇
  2014年   18篇
  2013年   14篇
  2012年   32篇
  2011年   19篇
  2010年   17篇
  2009年   11篇
  2008年   10篇
  2007年   13篇
  2006年   13篇
  2005年   13篇
  2004年   4篇
  2003年   8篇
  2002年   9篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   8篇
  1997年   1篇
  1996年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有273条查询结果,搜索用时 359 毫秒
21.
Zhao B  Yeo CC  Poh CL 《Proteomics》2005,5(7):1868-1876
Pseudomonas alcaligenes NCIMB 9867 (strain P25X) utilizes the gentisate pathway for the degradation of aromatic hydrocarbons. The gene encoding the alternative sigma (sigma) factor sigma(54), rpoN, was cloned from strain P25X and a rpoN knock-out strain, designated G54, was constructed by insertional inactivation with a kanamycin resistance gene cassette. The role of sigma(54) in the physiological response of P. alcaligenes P25X to gentisate induction was assessed by comparing the global protein expression profiles of the wild-type P25X with the rpoN mutant strain G54. Analysis of two-dimensional polyacrylamide gel electrophoresis gels showed that 39 out of 355 prominent protein spots exhibited differential expression as a result of the insertional inactivation of rpoN. Identification of the protein spots by matrix-assisted laser desorption/ionization-time of flight/time of flight revealed a wide diversity of proteins that are affected by the sigma(54) mutation, the largest group being proteins that are involved in carbon metabolism. The strictly inducible gentisate 1,2-dioxygenase, one of two isofunctional copies of the key enzyme in the gentisate pathway, and enzymes of the TCA cycle, pyruvate metabolism and gluconeogenesis were part of this group. Other proteins that are part of the sigma(54) regulon include enzymes implicated in nitrogen metabolism, transport proteins, stress-response proteins and proteins involved in cell motility. The results of this study showed that sigma(54) plays a global regulatory role in the expression of a wide variety of genes in P. alcaligenes, including the wild-type response to the presence of the aromatic inducer, gentisate.  相似文献   
22.
We analyzed 10 isobaric tags for relative and absolute quantitation (iTRAQ) experiments using three different model organisms across the domains of life: Saccharomyces cerevisiae KAY446, Sulfolobussolfataricus P2, and Synechocystis sp. PCC6803. A double database search strategy was employed to minimize the rate of false positives to less than 3% for all organisms. The reliability of proteins with single-peptide identification was also assessed using the search strategy, coupled with multiple analyses of samples into LC-MS/MS. The outcomes of the three LC-MS/MS analyses provided higher proteome coverage with an average increment in total proteins identified of 6%, 33%, and 50% found in S. cerevisiae, S. solfataricus, and Synechocystis sp., respectively. The iTRAQ quantification values were found to be highly reproducible across the injections, with an average coefficient of variation (CV) of 0.09 (scattering from 0.14 to 0.04) calculated based on log mean average ratio for all three organisms. Hence, we recommend multiple analyses of iTRAQ samples for greater proteome coverage and precise quantification.  相似文献   
23.
Saccharomyces cerevisiae KAY446 was utilized for ethanol production, with glucose concentrations ranging from 120 g/L (normal) to 300 g/L (high). Although grown in a high glucose environment, S. cerevisiae still retained the ability to produce ethanol with a high degree of glucose utilization. iTRAQ-mediated shotgun proteomics was applied to identify relative expression change of proteins under the different glucose conditions. A total of 413 proteins were identified from three replicate, independent LC-MS/MS runs. Unsurprisingly, many proteins in the glycolysis/gluconeogenesis pathway showed significant changes in expression level. Twenty five proteins involved in amino acid metabolism decreased their expression, while the expressions of 12 heat-shock related proteins were also identified. Under high glucose conditions, ethanol was produced as a major product. However, the assimilation of glucose as well as a number of byproducts was also enhanced. Therefore, to optimize the ethanol production under very high gravity conditions, a number of pathways will need to be deactivated, while still maintaining the correct cellular redox or osmotic state. Proteomics is demonstrated here as a tool to aid in this forward metabolic engineering.  相似文献   
24.
Human hair keratins have a strong potential for development as clinically relevant biomaterials because they are abundant and bioactive and are a realistic source of autologous proteins. Specifically, keratins have the propensity to polymerize in an aqueous environment to form hydrogels. In order to evaluate the suitability of keratin hydrogels as substrates for cell culture, we have fabricated hydrogels using keratins extracted from human hair by inducing polymerization with Ca2+; these hydrogels exhibit highly branched and porous micro-architectures. L929 murine fibroblasts have been used in a preliminary cell culture study to compare the in vitro biocompatibility of the keratin hydrogels with collagen type 1 hydrogels of similar viscoelastic properties. Our results reveal that keratin hydrogels are comparable with collagen hydrogels in terms of the promotion of cell adhesion, proliferation and the preservation of cell viability. Interestingly, cells remain clustered in proliferative colonies within the keratin hydrogels but are homogeneously distributed as single cells in collagen hydrogels. Collectively, our results demonstrate that keratin hydrogels can be used as substrates for cell culture. Such gels might find applications as templates for soft tissue regeneration.  相似文献   
25.
Genomic analyses have identified segments with high fiber-forming propensity in many proteins not known to form amyloid. Proteins are often protected from entering the amyloid state by molecular chaperones that permit them to fold in isolation from identical molecules; but, how do proteins self-chaperone their folding in the absence of chaperones? Here, we explore this question with the stable protein ribonuclease A (RNase A). We previously identified fiber-forming segments of amyloid-related proteins and demonstrated that insertion of these segments into the C-terminal hinge loop of nonfiber-forming RNase A can convert RNase A into the amyloid state through three-dimensional domain-swapping, where the inserted fiber-forming segments interact to create a steric zipper spine. In this study, we convert RNase A into amyloid-like fibers by increasing the loop length and hence conformational freedom of an endogenous fiber-forming segment, SSTSAASS, in the N-terminal hinge loop. This is accomplished by sandwiching SSTSAASS between inserted Gly residues. With these inserts, SSTSAASS is now able to form the steric zipper spine, allowing RNase A to form amyloid-like fibers. We show that these fibers contain RNase A molecules retaining their enzymatic activity and therefore native-like structure. Thus, RNase A appears to prevent fiber formation by limiting the conformational freedom of this fiber-forming segment from entering a steric zipper. Our observations suggest that proteins have evolved to self-chaperone by using similar protective mechanisms.  相似文献   
26.
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications.  相似文献   
27.
Structural variations (SVs) contribute significantly to the variability of the human genome and extensive genomic rearrangements are a hallmark of cancer. While genomic DNA paired-end-tag (DNA-PET) sequencing is an attractive approach to identify genomic SVs, the current application of PET sequencing with short insert size DNA can be insufficient for the comprehensive mapping of SVs in low complexity and repeat-rich genomic regions. We employed a recently developed procedure to generate PET sequencing data using large DNA inserts of 10–20 kb and compared their characteristics with short insert (1 kb) libraries for their ability to identify SVs. Our results suggest that although short insert libraries bear an advantage in identifying small deletions, they do not provide significantly better breakpoint resolution. In contrast, large inserts are superior to short inserts in providing higher physical genome coverage for the same sequencing cost and achieve greater sensitivity, in practice, for the identification of several classes of SVs, such as copy number neutral and complex events. Furthermore, our results confirm that large insert libraries allow for the identification of SVs within repetitive sequences, which cannot be spanned by short inserts. This provides a key advantage in studying rearrangements in cancer, and we show how it can be used in a fusion-point-guided-concatenation algorithm to study focally amplified regions in cancer.  相似文献   
28.
Tan CW  Chan YF  Sim KM  Tan EL  Poh CL 《PloS one》2012,7(5):e34589
Enterovirus 71 (EV-71) is the main causative agent of hand, foot and mouth disease (HFMD). In recent years, EV-71 infections were reported to cause high fatalities and severe neurological complications in Asia. Currently, no effective antiviral or vaccine is available to treat or prevent EV-71 infection. In this study, we have discovered a synthetic peptide which could be developed as a potential antiviral for inhibition of EV-71. Ninety five synthetic peptides (15-mers) overlapping the entire EV-71 capsid protein, VP1, were chemically synthesized and tested for antiviral properties against EV-71 in human Rhabdomyosarcoma (RD) cells. One peptide, SP40, was found to significantly reduce cytopathic effects of all representative EV-71 strains from genotypes A, B and C tested, with IC(50) values ranging from 6-9.3 μM in RD cells. The in vitro inhibitory effect of SP40 exhibited a dose dependent concentration corresponding to a decrease in infectious viral particles, total viral RNA and the levels of VP1 protein. The antiviral activity of SP40 peptide was not restricted to a specific cell line as inhibition of EV-71 was observed in RD, HeLa, HT-29 and Vero cells. Besides inhibition of EV-71, it also had antiviral activities against CV-A16 and poliovirus type 1 in cell culture. Mechanism of action studies suggested that the SP40 peptide was not virucidal but was able to block viral attachment to the RD cells. Substitutions of arginine and lysine residues with alanine in the SP40 peptide at positions R3A, R4A, K5A and R13A were found to significantly decrease antiviral activities, implying the importance of positively charged amino acids for the antiviral activities. The data demonstrated the potential and feasibility of SP40 as a broad spectrum antiviral agent against EV-71.  相似文献   
29.
Molecular Biology Reports - Tropomyosin is a major allergen in crustaceans, including mud crab species, but its molecular and allergenic properties in Scylla olivacea are not well known. Thus, this...  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号