首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2207篇
  免费   151篇
  2023年   4篇
  2022年   24篇
  2021年   38篇
  2020年   22篇
  2019年   27篇
  2018年   37篇
  2017年   16篇
  2016年   60篇
  2015年   122篇
  2014年   119篇
  2013年   132篇
  2012年   198篇
  2011年   186篇
  2010年   122篇
  2009年   95篇
  2008年   100篇
  2007年   122篇
  2006年   100篇
  2005年   102篇
  2004年   116篇
  2003年   88篇
  2002年   94篇
  2001年   57篇
  2000年   46篇
  1999年   45篇
  1998年   27篇
  1997年   14篇
  1996年   18篇
  1995年   13篇
  1994年   6篇
  1993年   15篇
  1992年   23篇
  1991年   19篇
  1990年   12篇
  1989年   21篇
  1988年   16篇
  1987年   10篇
  1986年   11篇
  1985年   9篇
  1984年   9篇
  1983年   4篇
  1981年   3篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   8篇
  1975年   10篇
  1974年   4篇
  1968年   2篇
  1966年   2篇
排序方式: 共有2358条查询结果,搜索用时 31 毫秒
151.
We have developed a new NIR fluorescent probe based on an ytterbium(III) (E)‐1‐(pyridin‐2‐yl‐diazenyl)naphthalen‐2‐ol (PAN) complex. This probe emits near‐infrared luminescence derived from the Yb ion through excitation of the PAN moiety with visible light (λex = 530 nm, λem = 975 nm). The results support the possible utility of the probe for in vivo fluorescence molecular imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
152.
153.
154.
155.
T-DNA-tagged rice plants were screened under cold- or salt-stress conditions to determine the genes involved in the molecular mechanism for their abiotic-stress response. Line 0-165-65 was identified as a salt-responsive line. The gene responsible for this GUS-positive phenotype was revealed by inverse PCR as OsGSK1 (O ryza s ativa g lycogen s ynthase k inase3-like gene 1), a member of the plant GSK3/SHAGGY-like protein kinase genes and an orthologue of the Arabidopsis b rassinosteroid in sensitive 2 (BIN2), AtSK21. Northern blot analysis showed that OsGSK1 was most highly detected in the developing panicles, suggesting that its expression is developmental stage specific. Knockout (KO) mutants of OsGSK1 showed enhanced tolerance to cold, heat, salt, and drought stresses when compared with non-transgenic segregants (NT). Overexpression of the full-length OsGSK1 led to a stunted growth phenotype similar to the one observed with the gain-of-function BIN/AtSK21 mutant. This suggests that OsGSK1 might be a functional rice orthologue that serves as a negative regulator of brassinosteroid (BR)-signaling. Therefore, we propose that stress-responsive OsGSK1 may have physiological roles in stress signal-transduction pathways and floral developmental processes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Serry Koh and Sang-Choon Lee are co-first authors.  相似文献   
156.
157.
158.
A balance between proteolytic activity and protease inhibition is crucial to the appropriate function of many biological processes. There is mounting evidence for the presence of both papain-like cysteine proteases and serpins with a corresponding inhibitory activity in the nucleus. Well characterized examples of cofactors fine tuning serpin activity in the extracellular milieu are known, but such modulation has not been studied for protease-serpin interactions within the cell. Accordingly, we present an investigation into the effect of a DNA-rich environment on the interaction between model serpins (MENT and SCCA-1), cysteine proteases (human cathepsin V and human cathepsin L), and cystatin A. DNA was indeed found to accelerate the rate at which MENT inhibited cathepsin V, a human orthologue of mammalian cathepsin L, up to 50-fold, but unexpectedly this effect was primarily effected via the protease and secondarily by the recruitment of the DNA as a "template" onto which cathepsin V and MENT are bound. Notably, the protease-mediated effect was found to correspond both with an altered substrate turnover and a conformational change within the protease. Consistent with this, cystatin inhibition, which relies on occlusion of the active site rather than the substrate-like behavior of serpins, was unaltered by DNA. This represents the first example of modulation of serpin inhibition of cysteine proteases by a co-factor and reveals a mechanism for differential regulation of cathepsin proteolytic activity in a DNA-rich environment.  相似文献   
159.
Fluctuations in cytosolic Ca(2+) are crucial for a variety of cellular processes including many aspects of development. Mobilization of intracellular Ca(2+) stores via the production of inositol trisphosphate (IP(3)) and the consequent activation of IP(3)-sensitive Ca(2+) channels is a ubiquitous means by which diverse stimuli mediate their cellular effects. Although IP(3) receptors have been well studied at fertilization, information regarding their possible involvement during subsequent development is scant. In the present study we examined the role of IP(3) receptors in early development of the zebrafish. We report the first molecular analysis of zebrafish IP(3) receptors which indicates that, like mammals, the zebrafish genome contains three distinct IP(3) receptor genes. mRNA for all isoforms was detectable at differing levels by the 64 cell stage, and IP(3)-induced Ca(2+) transients could be readily generated (by flash photolysis) in a controlled fashion throughout the cleavage period in vivo. Furthermore, we show that early blastula formation was disrupted by pharmacological blockade of IP(3) receptors or phospholipase C, by molecular inhibition of the former by injection of IRBIT (IP(3) receptor-binding protein released with IP(3)) and by depletion of thapsigargin-sensitive Ca(2+) stores after completion of the second cell cycle. Inhibition of Ca(2+) entry or ryanodine receptors, however, had little effect. Our work defines the importance of IP(3) receptors during early development of a genetically and optically tractable model vertebrate organism.  相似文献   
160.
Gene transfer techniques possess tremendous potential for treating diseases and for facilitating the study of basic physiological processes. However, further development of efficient and safe methods for gene transfer is needed. The purpose of this study was to test the hypothesis that mechanical strain increases the transfer of DNA to differentiated skeletal muscle cells. We tested this hypothesis by applying cyclic strain to cultured skeletal myotubes either prior to or immediately after the introduction of exogenous DNA complexed with lipids, with strains of varying magnitude (10%, 20% and 30%), number (1800, 3600 and 7200 strain cycles) and frequency (0.5, 1.0 and 1.5 Hz). Results demonstrated that DNA transfection was increased by exposing muscle cells to cyclic strain, and that strain magnitude, number and frequency each influenced DNA transfection. Optimal strain conditions (20% strain magnitude, 3600 cycles applied at 1 Hz) were utilized to examine the role of membrane transport systems in strain-induced increases in DNA transfection. Filipin III was used to inhibit caveolar transport and was found to inhibit strain-mediated increases in DNA transfection, whereas chlorpromazine, used to inhibit clathrin-coated vesicle transport, had no effect. These results indicate that mechanical strain may be an effective method for increasing DNA transfection in skeletal muscle through enhanced caveolar transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号