首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  16篇
  2022年   1篇
  2017年   1篇
  2015年   1篇
  2012年   3篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有16条查询结果,搜索用时 0 毫秒
11.
Previous structural studies based on the co-crystal of a complex between bovine pancreatic deoxyribonuclease I (bpDNase I) and a double-stranded DNA octamer d(GCGATCGC)(2) have suggested the presence of a putative secondary active site near Ser43. In our present study, several crucial amino acid residues postulated in this putative secondary active site, including Thr14, Ser43, and His44 were selected for site-directed mutagenesis. A series of single, double and triple mutants were thus constructed and tested for their DNase I activity by hyperchromicity assay. Substitution of each or both of Thr14 and Ser43 by alanine results in mutant enzymes retaining 30-70% of WT bpDNase I activity. However, when His44 was replaced by aspartic acid, either in the single, double, or triple mutant, the enzyme activities were drastically decreased to 0.5-5% that of WT bpDNase I. Interestingly, when cysteine was substituted for Thr14 or Ser43, the specific DNase activities of the mutant enzymes were substantially increased by 1.5-100-fold, comparing to their alanine substitution mutant counterparts. Two other more sensitive DNase activity assay method, plasmid scission and zymogram analyses further confirm these observations. These results suggested that His44 may play a critical role in substrate DNA binding in this putative secondary active site, and introduction of sulfhydryl groups at Thr14 and Ser43 may facilitate Mn(2+)-coordination and further contribute to the catalytic activity of bpDNase I.  相似文献   
12.
Syncytin is an envelope protein of the human endogenous retrovirus family W (HERV-W). Syncytin is specifically expressed in the human placenta and mediates trophoblast cell fusion into the multinucleated syncytiotrophoblast layer. It is a polypeptide of 538 amino acids and is predicted to be posttranslationally cleaved into a surface (SU) subunit and a transmembrane (TM) subunit. Functional characterization of syncytin protein can aid understanding of the molecular mechanism underlying syncytin-mediated cell fusion. In this report, we studied the structure-function relationship of syncytin in 293T and HeLa cells transiently expressing wild-type syncytin or syncytin mutants generated by linker scanning and deletion mutagenesis. Of the 22 linker-inserted mutants, mutants InS51, InV139, InE156, InS493, InA506, and InL529 were fusogenic, suggesting that regions around amino acids S51, V139, and E156 in the SU subunit and S493, A506, and L529 in the cytoplasmic domain (CTM) of syncytin are flexible in conformation. Of the 17 deletion mutants, nine mutants with deletions in the region from amino acids 479 to 538 were fusogenic. The deletion mutant DelI480, containing only the first four amino acid residues in the cytoplasmic domain, had enhanced fusogenic activity in comparison with the wild-type. In addition, two heptad repeat regions (HRA and B) were defined in the TM subunit of syncytin. A peptide inhibitor derived from the C-terminal heptad repeat region (HRB) was shown to potently inhibit syncytin-mediated cell fusion. Our results suggest that the cytoplasmic domain of syncytin is not essential for syncytin-mediated fusion but may play a regulatory role, and an intramolecular interaction between HRA and B is involved in the fusion process.  相似文献   
13.
The pro-inflammatory cytokines TNF-alpha and IL-1beta are two of the important mediators involved in the several chronic inflammatory diseases. We used the release of TNF-alpha and IL-1beta from lipopolysaccharide-stimulated human PBMC as inflammatory indexes to discover the potential anti-inflammatory candidates. Among near 500 chemical compounds, MT4 had the suppressive action on the release of TNF-alpha and IL-1beta in PBMC with IC50 values of 22 and 44 nM, respectively. After verified the MT4 inhibitory mechanism, the results revealed that p38alpha and p38beta MAPK activity was inhibited by MT4 with an IC50 value of 0.13 and 0.55 microM, respectively. Further characterization of enzyme kinetics showed the binding mode of MT4 was competitive with the ATP substrate-binding site of p38alpha MAPK.  相似文献   
14.
A variety of evolutionarily related defensin molecules is found in plants and animals. Plant gamma-thionins and scorpion neurotoxins, for instance, may be categorized in this functional group, although each class recognizes a distinct receptor binding site. Such molecules are also categorized into the superfamily of cysteine-rich proteins. Plant defensins were generally believed to be involved in antimicrobial or antifungal mechanisms and, unlike scorpion toxins, little is known about whether these molecules are also endowed with the function of insect resistance. We have previously reported the isolation of a cDNA encoding a small cysteine-rich protein designated VrD1 (VrCRP) from a bruchid-resistant mungbean, which is apparently the first discovered plant defensin exhibiting in vitro and in vivo both insecticidal and antifungal activities. Our previous data also successfully demonstrated that VrD1 is toxic to E. coli and able to completely arrest the growth of Sf-21 insect cells at low concentration. However, the molecular and structural basis of this unique insecticidal activity of VrD1 is not clear. Therefore, in the present study, we use structural approach and phylogenic analysis to investigate the evolutionary and functional relations for such unique insecticidal activity. From our results, it is suggested that VrD1, in addition to gamma-thionins and several amylase inhibitors, is highly homologous to scorpion toxins, especially the short toxins. Moreover, based on the observation from our homology structures, VrD1 may utilize a newly found cluster of basic residues to achieve its insecticidal function, whereas all the other plant gamma-thionins were known to use a previously identified basic cluster conserved for gamma-thionins. Considering the general feature of short scorpion toxins to act on insect cell membranes with K(+)- or Cl(-)-channels as molecular targets, our analysis of interaction and recognition modes provides reasonable correlations between this newly found basic cluster and the insecticidal activity of VrD1, which is also comprehended as a possible link for "homoplasy evolution" between plant and animal defensin molecules.  相似文献   
15.
The protein kinase C (PKC) pathway is important for the regulation of K(+) transport. The renal outer medullar K(+) (ROMK1) channels show an exquisite sensitivity to intracellular protons (pH(i)) (effective pK(a) approximately 6.8) and play a key role in K(+) homeostasis during metabolic acidosis. Our molecular dynamic simulation results suggest that PKC-mediated phosphorylation on Thr-193 may disrupt the PIP(2)-channel interaction via a charge-charge interaction between Thr-193 and Arg-188. Therefore, we investigated the role of PKC and pH(i) in regulation of ROMK1 channel activity using a giant patch clamp with Xenopus oocytes expressing wild-type and mutant ROMK1 channels. ROMK1 channels pre-incubated with the PKC activator phorbol-12-myristate-13-acetate exhibited increased sensitivity to pH(i) (effective pK(a) shifted to pH approximately 7.0). In the presence of GF109203X--a PKC selective inhibitor--the effective pK(a) for inhibition of ROMK1 channels by pH(i) decreased (effective pK(a) shifted to pH approximately 6.5). The pH(i) sensitivity of ROMK1 channels mediated by PKC appeared to be dependent of PIP(2) depletion. The giant patch clamp together with site direct mutagenesis revealed that Thr-193 is the phosphorylation site on PKC that regulates the pH(i) sensitivity of ROMK1 channels. Mutation of PKC-induced phosphorylation sites (T193A) decreases the pH(i) sensitivity and increases the interaction of channel-PIP(2). Taken together, these results provide new insights into the molecular mechanisms underlying the pH(i) gating of ROMK1 channel regulation by PKC.  相似文献   
16.
While S4 is known as the voltage sensor in voltage-gated potassium channels, the carboxyl terminus of S3 (S3C) is of particular interest concerning the site for gating modifier toxins like hanatoxin. The thus derived helical secondary structural arrangement for S3C, as well as its surrounding environment, has since been intensively and vigorously debated. Our previous structural analysis based on molecular simulation has provided sufficient information to describe reasonable docking conformation and further experimental designs (Lou et al., 2002. J. Mol. Recognit. 15: 175-179). However, if one only relies on such information, more advanced structure-functional interpretations for the roles S3C may play in the modification of gating behavior upon toxin binding will remain unknown. In order to have better understanding of the molecular details regarding this issue, we have performed the docking simulation with the S3C sequence from the hanatoxin-insensitive K+-channel, shaker, and analyzed the conformational changes resulting from such docking. Compared with other functional data from previous studies with respect to the proximity of the S3-S4 linker region, we suggested a significant movement of drk1 S3C, but not shaker S3C, in the direction presumably towards S4, which was comprehended as a possible factor interfering with S4 translocation during drk1 gating in the presence of toxin. In combination with the discussions for structural roles of the length of the S3-S4 linker, a possible molecular mechanism to illustrate the hanatoxin binding-modified gating is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号