首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1730篇
  免费   213篇
  国内免费   9篇
  2022年   11篇
  2021年   23篇
  2020年   14篇
  2019年   15篇
  2018年   20篇
  2017年   15篇
  2016年   35篇
  2015年   91篇
  2014年   87篇
  2013年   92篇
  2012年   125篇
  2011年   112篇
  2010年   93篇
  2009年   68篇
  2008年   89篇
  2007年   70篇
  2006年   82篇
  2005年   75篇
  2004年   65篇
  2003年   70篇
  2002年   57篇
  2001年   61篇
  2000年   57篇
  1999年   56篇
  1998年   25篇
  1997年   35篇
  1996年   18篇
  1995年   20篇
  1994年   26篇
  1993年   15篇
  1992年   36篇
  1991年   31篇
  1990年   32篇
  1989年   21篇
  1988年   21篇
  1987年   26篇
  1986年   10篇
  1985年   21篇
  1984年   8篇
  1983年   12篇
  1982年   10篇
  1980年   10篇
  1979年   10篇
  1978年   8篇
  1977年   9篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   8篇
  1968年   6篇
排序方式: 共有1952条查询结果,搜索用时 31 毫秒
151.
Cell cycle is controlled at two restriction points, R 1 and R 2. At both points the cell will commit apoptosis if it detects irreparable damage. But at R 1 an undamaged cell also decides whether to proceed to the S phase or go into a quiescent mode, depending on the environmental conditions (e.g., overpopulation, hypoxia). We consider the effect of this decision at the population level in a spherical tissue {r < R(t)}. We prove that if the cells have full control at R 1, they can manipulate the size of R(t) to ensure that 0 < cR(t) ≤ C < ∞; simulations further show that R(t) can be made nearly stationary. In the absence of such control, R(t) will either increase to ∞ or decrease to 0. The mathematical model and analysis involve a system of PDEs in {r < R(t)}.  相似文献   
152.
The main goal of this study was to investigate the long-term effect of daily 8-hour mild intermittent hypoxia (14-15% O2) on glucose tolerance and muscle morphology of Sprague-Dawley rats. The involvement of AMPK-PGC-1alpha-VEGF signaling pathways in the skeletal muscle was also determined during the first 8 hours of hypoxia. We found that mRNA levels of VEGF and PGC-1alpha were significantly increased above control after 8-h mild hypoxia without a change in AMPK phosphorylation. After 8 weeks of mild intermittent hypoxia treatment, plasma glucose and insulin levels in oral glucose tolerance test (OGTT), epididymal fat mass, and body weight were significantly lower compared to the control group. While soleus muscle weight was not changed, capillary and fiber densities in the hypoxia group were 33% and 35% above the control suggesting reorganization of muscle fibers. In conclusion, our data provide strong evidence that long-term mild intermittent hypoxia decreases the diffusion distance of glucose and insulin across muscle fibers, and decreases adiposity in rats. These changes may account for the improved glucose tolerance observed following the 8-week hypoxia treatment, and provides grounds for investigating the development of a mild non-pharmacological intervention in the treatment of obesity and type 2 diabetes.  相似文献   
153.
154.
Evidence suggests that relaxin-3 may have biological functions in the reproductive and central nervous systems. To date, however, relaxin-3 biodistribution has only been investigated in the mouse, rat, pig and teleost fish. Characterizing relaxin-3 gene structure, expression patterns, and function in non-human primates and humans is critical to delineating its biological significance. Experiments were performed to clone the rhesus macaque orthologues of the relaxin-3 peptide hormone and its cognitive receptors (RXFP1 and RXFP4). An investigation of rhesus relaxin-3 bioactivity and RXFP1 binding properties was also performed. Next we sought to investigate relaxin-3 immunoreactivity in human and rhesus macaque tissues. Immunohistofluorescence staining for relaxin-3 in the brain, testis, and prostate indicated predominant immunostaining in the ventral and dorsal tegmental nuclei, interstitial space surrounding the seminiferous tubules, and prostatic stromal cells, respectively. Further, in studies designed towards exploring biological functions, we observed neuroprotective actions of rhesus relaxin-3 on human neuronal cell cultures. Taken together, this study broadens the significance of relaxin-3 as a peptide involved in both neuronal cell function and reproductive tissues in primates.  相似文献   
155.
Aberrant alternative splicing of key cellular regulators may play a pivotal role in cancer development. To investigate the potential influence of altered alternative splicing on the development of transitional cell carcinoma (TCC), splicing activity in the TCC cell lines TSGH8301 and BFTC905 was examined using the SV40-immortalized uroepithelial cell line SV-HUC-1 as a reference. Our results indicate a significant alteration in splice site selection in the TCC cell lines. By gene expression profiling and subsequent validation, we discovered that sex-determining region Y-box protein 2 (SOX2) is specifically upregulated in BFTC905. Furthermore, ectopic expression of SOX2 modulates alternative splicing of the splicing reporter in vivo. More significantly, using an in vitro pull-down assay, it was found that SOX2 exhibits RNA-binding capability. Our observations suggest that SOX2 modulates alternative splicing by functioning as a splicing factor.  相似文献   
156.
In order to avoid interference from nuclear copies of mitochondrial DNA (numts), mtDNA of the white Roman goose (domestic goose) was extracted from liver mitochondria. The mtDNA control region was amplified using a long PCR strategy and then sequenced. Neighbor-joining, maximum parsimony, and maximum-likelihood approaches were implemented using the 1,177 bp mtDNA control region sequences to compute the phylogenetic relationships of the domestic goose with other geese. The resulting identity values for the white Roman geese were 99.1% (1,166/1,177) with western graylag geese and 98.8% (1,163/1,177) with eastern graylag geese. In molecular phylogenetic trees, the white Roman goose was grouped in the graylag lineage, indicating that the white Roman goose came from the graylag goose (Anser anser). Thus, the scientific name of the white Roman goose should be Anser anser ‘White Roman.’  相似文献   
157.
Nucleic acids are an important target for many therapeutics. Small molecules that bind to nucleic acids are important in many aspects of medicines, particularly in cancer chemotherapy. In recent years, many studies have utilized polynucleic acids with various sequences to demonstrate the binding mechanism of daunomycin, a potent anticancer drug. This study describes that isothermal titration calorimetry is a useful tool for studying the fundamental binding mechanism systemically. The results suggest that the binding free energy is more favorable when the temperature is increased. The binding entropy contributes to this effect. Furthermore, the amine group on daunomycin contributes electrostatic interaction that induces the binding process. In addition, enthalpy-entropy compensation is also exhibited in the daunomycin-DNA binding mechanism. This study used an easy, convenient method of performing a systemic study in a recognition system. The results from this study provide additional information about microscopic mechanisms for molecular design and molecular recognition.  相似文献   
158.
Surface topography and texture of cell culture substrata can affect the differentiation and growth of adherent cells. The biochemical basis of the transduction of the physical and mechanical signals to cellular responses is not well understood. The lack of a systematic characterization of cell-biomaterial interaction is the major bottleneck. This study demonstrated the use of a novel subcellular fractionation method combined with quantitative MS-based proteomics to enable the robust and high-throughput analysis of proteins at the adherence interface of Madin-Darby canine kidney cells. This method revealed the enrichment of extracellular matrix proteins and membrane and stress fibers proteins at the adherence surface, whereas it shows depletion of extracellular matrix belonging to the cytoplasmic, nucleus, and lateral and apical membranes. The asymmetric distribution of proteins between apical and adherence sides was also profiled. Apart from classical proteins with clear involvement in cell-material interactions, proteins previously not known to be involved in cell attachment were also discovered.The growth and differentiation of cells in multicellular organisms are regulated by the complex interplay of biochemical and mechanical signals. In the past decades, a plethora of data on the roles of mechanical and structural cues in modulating cellular behaviors has emerged (15). It is increasingly evident that cell fates can be changed by engineering the physical properties of the microenvironment to which the cells are exposed (68). These observations have inspired the development of functionalized biomaterials that can directly and specifically interact with tissue components, and support or even direct the appropriate cellular activities (9, 10). Although promising progress has been observed in the past few years, several gaps in knowledge in this field have hindered the development of such ”intelligent” biomaterials. In particular, the understanding of the mechanism in which the cell orchestrates physiological and morphological changes by translating mechanical and structural information into biochemical signals is still very limited.As a standard experimental model, cell lines cultured in vitro as a monolayer over solid substrata are usually used to study the effects of biomaterial surfaces on cellular phenotypes. With this simple model system, ingenious experiments have shown that physical forces applied through the extracellular matrix (ECM)1 can induce changes in cell adhesion molecules and stress-induced ion channels, which then lead to changes in the cytoskeleton and gene expressions (1113). We term the biochemical structure present at the interface between the substratum and the cellular interior the adherence surface (AS), which is composed of the basal plasma membrane with associated structures such as the ECM on one side and the focal adherence complexes on the other. In monolayer cell culture systems, the AS is the only part of the cells in direct contact with the substratum, and is therefore responsible for the first line of communication between the cells and the biomaterial. It is likely that the AS is the organelle that mediates the communication of mechanical and tectonic signals from the substratum to biochemical transducers in the cells. Given the complexity of this process, it is clear that the understanding of this phenomenon cannot be achieved merely by studying individual biological parts in isolation. It is necessary, therefore, to systematically characterize the biochemical factors that mediate the interactions between cells and materials to yield insights into intracellular signaling processes that are responsible for such cellular responses. Toward this goal, we seek to investigate the biochemical basis of how different biomaterials may impose changes in the composition of the AS of adherent cells.MS-based proteomics have recently emerged as a standard technique in modern cell biology. Various techniques based on the chemical conjugation of isotopically labeled reporters to proteins or peptides, such as the isobaric tag for relative and absolute quantitation (iTRAQ) and the isotope-coded affinity tags, enable MS-based proteomics to quantify and compare proteome changes between biological samples. As an attractive alternative, stable isotope labeling with amino acids in cell culture (SILAC) is a metabolic labeling technique that enables isotopically encoded cells to be mixed before lysis and fractionation, thus eliminating inherent quantification biases in these steps, and also enables a simpler procedure and more accurate quantitation (14). SILAC MS-based proteomics have recently contributed to organellar proteomes (15, 16), accurate measurement of protein-protein interactions (17), and the characterization of proteome dynamics during cell differentiation (18). The use of MS-based proteomics has enabled the systematic evaluation of proteome changes on the adhesion of cells to substrata of interest. Kantawong et al. (19) applied DIGE and LC-MS/MS to identify proteome changes in cells on surface with nanotopography. Xu et al. (20) investigated proteome differences of human osteoblasts on various nano-sized hydroxyapatite powders with different shapes and chemical compositions using iTRAQ-based two-dimensional LC-MS/MS.One advantage of proteomics is that it can effectively be combined with subcellular fractionation and allow the comprehensive characterization of the proteins enriched in targeted cellular structures. To yield new insight in molecular interactions in cell-biomaterial interfaces, we aimed to develop a robust protocol for the proteomic characterization of the AS of adherent cells on a biomaterial surface and use it for discovering new cell-biomaterial interface specific biomarkers. Our approach was to develop an isolation technique for AS with high yields and purity for proteomic analysis. The isolated AS on substratum was analyzed by confocal microscopy and Western blotting. SILAC was then used to characterize the fold-enrichment of proteins in the purified AS compared with whole cells and to discover new biomolecules in the cell-biomaterial interface. This study introduces a novel cell-biomaterial interface proteomic procedure, which can be used to identify the AS specific proteome in a high throughput manner and provide a simple and robust method to systematically analyze cell-biomaterial interactions at a molecular level.  相似文献   
159.
Rice (Oryza sativa L.) seedlings stressed with CdCl2 (0.5 mM or 50 μM) showed typical Cd toxicity (leaf chlorosis, decrease in chlorophyll content, or increase in H2O2 and malondialdehyde contents). Rice seedlings pretreated with heat shock at 45°C (HS) for 2 or 3 h were protected against subsequent Cd stress. Rice seedlings pretreated with HS had similar Cd concentration in leaves caused by CdCl2 as those non-HS. The content of H2O2 increased in leaves 1 h after HS exposure. However, APX and GR activities were higher in HS-treated leaves than their respective control, and it occurred after 2 h of HS treatment. Pretreatment of rice seedlings with H2O2 under non-HS conditions resulted in an increase in APX, GR, and CAT activities and protected rice seedlings from subsequent Cd stress. HS-induced H2O2 production and protection against subsequent Cd stress can be counteracted by imidazole, an inhibitor of NADPH oxidase complex. Results of the present study suggest that early accumulation of H2O2 during HS signals the increase in APX and GR activities, which in turn prevents rice seedlings from Cd-caused oxidative damage.  相似文献   
160.
Cadmium-induced oxidative damage in rice leaves is reduced by polyamines   总被引:4,自引:0,他引:4  
The protective effect of polyamines against Cd toxicity of rice (Oryza sativa) leaves was investigated. Cd toxicity to rice leaves was determined by the decrease in protein content. CdCl2 treatment results in (1) increased Cd content, (2) induction of Cd toxicity, (3) increase in H2O2 and malondialdehyde (MDA) contents, (4) decrease in ascorbic acid (ASC) and reduced glutathione (GSH) contents, and (5) increase in the activities of antioxidative enzymes (superoxide dismutase, glutathione reductase, ascorbate peroxidase, catalase, and peroxidase). Spermidine (Spd) and spermine (Spm), but not putrescine (Put), were effective in reducing CdCl2-induced toxicity. Spd and Spm prevented CdCl2-induced increase in the contents of H2O2 and MDA, decrease in the contents of ASC and GSH, and increase in the activities of antioxidative enzymes. Spd and Spm pretreatments resulted in a decrease in Cd content when compared with H2O pretreatment, indicating that Spd and Spm may reduce the uptake of Cd. Results of the present study suggest that Spd and Spm are able to protect Cd-induced oxidative damage and this protection is most likely related to the avoidance of H2O2 generation and the reduction of Cd uptake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号