首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1730篇
  免费   213篇
  国内免费   9篇
  2022年   11篇
  2021年   23篇
  2020年   14篇
  2019年   15篇
  2018年   20篇
  2017年   15篇
  2016年   35篇
  2015年   91篇
  2014年   87篇
  2013年   92篇
  2012年   125篇
  2011年   112篇
  2010年   93篇
  2009年   68篇
  2008年   89篇
  2007年   70篇
  2006年   82篇
  2005年   75篇
  2004年   65篇
  2003年   70篇
  2002年   57篇
  2001年   61篇
  2000年   57篇
  1999年   56篇
  1998年   25篇
  1997年   35篇
  1996年   18篇
  1995年   20篇
  1994年   26篇
  1993年   15篇
  1992年   36篇
  1991年   31篇
  1990年   32篇
  1989年   21篇
  1988年   21篇
  1987年   26篇
  1986年   10篇
  1985年   21篇
  1984年   8篇
  1983年   12篇
  1982年   10篇
  1980年   10篇
  1979年   10篇
  1978年   8篇
  1977年   9篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   8篇
  1968年   6篇
排序方式: 共有1952条查询结果,搜索用时 187 毫秒
121.
Although Petunia axillaris subsp. axillaris is described as a self-incompatible taxon, some of the natural populations we have identified in Uruguay are composed of both self-incompatible and self-compatible plants. Here, we studied the self-incompatibility (SI) behavior of 50 plants derived from such a mixed population, designated U83, and examined the cause of the breakdown of SI. Thirteen plants were found to be self-incompatible, and the other 37 were found to be self-compatible. A total of 14 S-haplotypes were represented in these 50 plants, including two that we had previously identified from another mixed population, designated U1. All the 37 self-compatible plants carried either an S(C1)- or an S(C2)-haplotype. S(C1)S(C1) and S(C2)S(C2) homozygotes were generated by self-pollination of two of the self-compatible plants, and they were reciprocally crossed with 40 self-incompatible S-homozygotes (S(1)S(1) through S(40)S(40)) generated from plants identified from three mixed populations, including U83. The S(C1)S(C1) homozygote was reciprocally compatible with all the genotypes examined. The S(C2)S(C2) homozygote accepted pollen from all but the S(17)S(17) homozygote (identified from the U1 population), but the S(17)S(17) homozygote accepted pollen from the S(C2)S(C2) homozygote. cDNAs encoding S(C2)- and S(17)-RNases were cloned and sequenced, and their nucleotide sequences were completely identical. Analysis of bud-selfed progeny of heterozygotes carrying S(C1) or S(C2) showed that the SI behavior of S(C1) and S(C2) was identical to that of S(C1) and S(C2) homozygotes, respectively. All these results taken together suggested that the S(C2)-haplotype was a mutant form of the S(17)-haplotype, with the defect lying in the pollen function. The possible nature of the mutation is discussed.  相似文献   
122.
Gametophytic self-incompatibility (SI) possessed by the Solanaceae is controlled by a highly polymorphic locus called the S locus. The S locus contains two linked genes, S-RNase, which determines female specificity, and the as yet unidentified pollen S gene, which determines male specificity in SI interactions. To identify the pollen S gene of Petunia inflata, we had previously used mRNA differential display and subtractive hybridization to identify 13 pollen-expressed genes that showed S -haplotype-specific RFLP. Here, we carried out recombination analysis of 1205 F2 plants to determine the genetic distance between each of these S -linked genes and S-RNase. Recombination was observed between four of the genes (3.16, G211, G212, and G221) and S-RNase, whereas no recombination was observed for the other nine genes (3.2, 3.15, A113, A134, A181, A301, G261, X9, and X11). A genetic map of the S locus was constructed, with 3.16 and G221 delimiting the outer limits. None of the observed crossovers disrupted SI, suggesting that all the genes required for SI are contained in the chromosomal region defined by 3.16 and G221. These results and our preliminary chromosome walking results suggest that the S locus is a huge multi-gene complex. Allelic sequence diversity of G221 and 3.16, as well as of 3.2, 3.15, A113, A134 and G261, was determined by comparing two or three alleles of their cDNA and/or genomic sequences. In contrast to S-RNase, all these genes showed very low degrees of allelic sequence diversity in the coding regions, introns, and flanking regions.  相似文献   
123.
Singh US  Kunar MT  Kao YL  Baker KM 《The EMBO journal》2001,20(10):2413-2423
Transamidation is a post-translational modification of proteins mediated by tissue transglutaminase II (TGase), a GTP-binding protein, participating in signal transduction pathways as a non-conventional G-protein. Retinoic acid (RA), which is known to have a role in cell differentiation, is a potent activator of TGASE: The activation of TGase results in increased transamidation of RhoA, which is inhibited by monodansylcadaverine (MDC; an inhibitor of transglutaminase activity) and TGaseM (a TGase mutant lacking transglutaminase activity). Transamidated RhoA functions as a constitutively active G-protein, showing increased binding to its downstream target, RhoA-associated kinase-2 (ROCK-2). Upon binding to RhoA, ROCK-2 becomes autophosphorylated and demonstrates stimulated kinase activity. The RA-stimulated interaction between RhoA and ROCK-2 is blocked by MDC and TGaseM, indicating a role for transglutaminase activity in the interaction. Biochemical effects of TGase activation, coupled with the formation of stress fibers and focal adhesion complexes, are proposed to have a significant role in cell differentiation.  相似文献   
124.
With PCR products as probes, we have cloned two new cry-type genes from Bacillus thuringiensis subsp. wuhanensis. The deduced amino acid sequence of the first clone is 77.3% identical to Cry1Ga1. The deduced protein sequence of the second clone is 69.8–78.7% identical to that of Cry1B group. The nomenclature assignment of these two clones is, therefore, named Cry1Gb1 and Cry1Bd1, respectively. The Cry1Bd1 is toxic to Plutella xylostella larvae, and the Cry1Gb1 is toxic to Pieris rapae larvae. Received: 2 August 1999 / Accepted: 18 October 1999  相似文献   
125.
126.
127.
Kao CC  Yang X  Kline A  Wang QM  Barket D  Heinz BA 《Journal of virology》2000,74(23):11121-11128
The RNA-dependent RNA polymerase (RdRp) from hepatitis C virus (HCV), nonstructural protein 5B (NS5B), has recently been shown to direct de novo initiation using a number of complex RNA templates. In this study, we analyzed the features in simple RNA templates that are required to direct de novo initiation of RNA synthesis by HCV NS5B. NS5B was found to protect RNA fragments of 8 to 10 nucleotides (nt) from RNase digestion. However, NS5B could not direct RNA synthesis unless the template contained a stable secondary structure and a single-stranded sequence that contained at least one 3' cytidylate. The structure of a 25-nt template, named SLD3, was determined by nuclear magnetic resonance spectroscopy to contain an 8-bp stem and a 6-nt single-stranded sequence. Systematic analysis of changes in SLD3 revealed which features in the stem, loop, and 3' single-stranded sequence were required for efficient RNA synthesis. Also, chimeric molecules composed of DNA and RNA demonstrated that a DNA molecule containing a 3'-terminal ribocytidylate was able to direct RNA synthesis as efficiently as a sequence composed entirely of RNA. These results define the template sequence and structure sufficient to direct the de novo initiation of RNA synthesis by HCV RdRp.  相似文献   
128.
Replication of viral RNA genomes requires the specific interaction between the replicase and the RNA template. Members of the Bromovirus and Cucumovirus genera have a tRNA-like structure at the 3' end of their genomic RNAs that interacts with the replicase and is required for minus-strand synthesis. In Brome mosaic virus (BMV), a stem-loop structure named C (SLC) is present within the tRNA-like region and is required for replicase binding and initiation of RNA synthesis in vitro. We have prepared an enriched replicase fraction from tobacco plants infected with the Fny isolate of Cucumber mosaic virus (Fny-CMV) that will direct synthesis from exogenously added templates. Using this replicase, we demonstrate that the SLC-like structure in Fny-CMV plays a role similar to that of BMV SLC in interacting with the CMV replicase. While the majority of CMV isolates have SLC-like elements similar to that of Fny-CMV, a second group displays sequence or structural features that are distinct but nonetheless recognized by Fny-CMV replicase for RNA synthesis. Both motifs have a 5'CA3' dinucleotide that is invariant in the CMV isolates examined, and mutational analysis indicates that these are critical for interaction with the replicase. In the context of the entire tRNA-like element, both CMV SLC-like motifs are recognized by the BMV replicase. However, neither motif can direct synthesis by the BMV replicase in the absence of other tRNA-like elements, indicating that other features of the CMV tRNA can induce promoter recognition by a heterologous replicase.  相似文献   
129.
Ralstonia solanacearum is the causal agent of bacterial wilt of many agriculturally important crops. Exopolysaccharide synthesized by products of the epsI operon is the major virulence factor for R. solanacearum. Expression of epsI has been demonstrated to be under the control of several proteins, including several two-component regulators. Overexpression of EpsR was found previously to reduce the amount of synthesis specifically from the epsI promoter. Here we present data that a single chromosomal copy of epsR activates the epsI promoter, suggesting that EpsR is a concentration-dependent effector of epsI gene expression. Furthermore, the ability of EpsR to modulate epsI expression is dependent on the phosphorylation state of EpsR. Gel mobility shift assays suggest that EpsR can specifically bind the epsI promoter and that this binding requires a phosphorylated form of EpsR.  相似文献   
130.
In freshly dissociated uterine myocytes, the outward current is carried by K+ through channels highly selective for K+. Typically, nonpregnant myocytes have rather noisy K+ currents; half of them also have a fast-inactivating transient outward current (ITO). In contrast, the current records are not noisy in late pregnant myocytes, and ITO densities are low. The whole-cell IK of nonpregnant myocytes respond strongly to changes in [Ca2+]o or changes in [Ca2+]i caused by photolysis of caged Ca2+ compounds, nitr 5 or DM-nitrophene, but that of late-pregnant myocytes respond weakly or not at all. The Ca2+ insensitivity of the latter is present before any exposure to dissociating enzymes. By holding at −80, −40, or 0 mV and digital subtractions, the whole-cell IK of each type of myocyte can be separated into one noninactivating and two inactivating components with half-inactivation at approximately −61 and −22 mV. The noninactivating components, which consist mainly of iberiotoxin-susceptible large-conductance Ca2+-activated K+ currents, are half-activated at 39 mV in nonpregnant myocytes, but at 63 mV in late-pregnant myocytes. In detached membrane patches from the latter, identified 139 pS, Ca2+-sensitive K+ channels also have a half-open probability at 68 mV, and are less sensitive to Ca2+ than similar channels in taenia coli myocytes. Ca2+-activated K+ currents, susceptible to tetraethylammonium, charybdotoxin, and iberiotoxin contribute 30–35% of the total IK in nonpregnant myocytes, but <20% in late-pregnant myocytes. Dendrotoxin-susceptible, small-conductance delayed rectifier currents are not seen in nonpregnant myocytes, but contribute ∼20% of total IK in late-pregnant myocytes. Thus, in late-pregnancy, myometrial excitability is increased by changes in K+ currents that include a suppression of the ITO, a redistribution of IK expression from large-conductance Ca2+-activated channels to smaller-conductance delayed rectifier channels, a lowered Ca2+ sensitivity, and a positive shift of the activation of some large-conductance Ca2+-activated channels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号