首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   18篇
  国内免费   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   7篇
  2013年   16篇
  2012年   8篇
  2011年   4篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   8篇
  2005年   8篇
  2004年   2篇
  2003年   9篇
  2002年   9篇
  2001年   4篇
  2000年   8篇
  1999年   5篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   7篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1977年   2篇
  1975年   3篇
  1974年   2篇
  1971年   3篇
  1965年   1篇
  1963年   1篇
  1958年   1篇
  1956年   1篇
排序方式: 共有193条查询结果,搜索用时 515 毫秒
81.
Grazing management recommendations often sacrifice the intrinsic heterogeneity of grasslands by prescribing uniform grazing distributions through smaller pastures, increased stocking densities, and reduced grazing periods. The lack of patch-burn grazing in semi-arid landscapes of the western Great Plains in North America requires alternative grazing management strategies to create and maintain heterogeneity of habitat structure (e.g., animal unit distribution, pasture configuration), but knowledge of their effects on grassland fauna is limited. The lesser prairie-chicken (Tympanuchus pallidicinctus), an imperiled, grassland-obligate, native to the southern Great Plains, is an excellent candidate for investigating effects of heterogeneity-based grazing management strategies because it requires diverse microhabitats among life-history stages in a semi-arid landscape. We evaluated influences of heterogeneity-based grazing management strategies on vegetation structure, habitat selection, and nest and adult survival of lesser prairie-chickens in western Kansas, USA. We captured and monitored 116 female lesser prairie-chickens marked with very high frequency (VHF) or global positioning system (GPS) transmitters and collected landscape-scale vegetation and grazing data during 2013–2015. Vegetation structure heterogeneity increased at stocking densities ≤0.26 animal units/ha, where use by nonbreeding female lesser prairie-chickens also increased. Probability of use for nonbreeding lesser prairie-chickens peaked at values of cattle forage use values near 37% and steadily decreased with use ≥40%. Probability of use was positively affected by increasing pasture area. A quadratic relationship existed between growing season deferment and probability of use. We found that 70% of nests were located in grazing units in which grazing pressure was <0.8 animal unit months/ha. Daily nest survival was negatively correlated with grazing pressure. We found no relationship between adult survival and grazing management strategies. Conservation in grasslands expressing flora community composition appropriate for lesser prairie-chickens can maintain appropriate habitat structure heterogeneity through the use of low to moderate stocking densities (<0.26 animal units/ha), greater pasture areas, and site-appropriate deferment periods. Alternative grazing management strategies (e.g., rest-rotation, season-long rest) may be appropriate in grasslands requiring greater heterogeneity or during intensive drought. Grazing management favoring habitat heterogeneity instead of uniform grazing distributions will likely be more conducive for preserving lesser prairie-chicken populations and grassland biodiversity. © 2021 The Wildlife Society.  相似文献   
82.
Cultivable strains were identified from sulfate-reducing fluidized-bed reactors (FBR) treating acidic metal-containing wastewater. The FBR-communities were further characterized using culture-independent phenotypic markers, phospholipid fatty acid (PLFA) profiling. After morphological screening of 128 bacterial strains and partial sequencing of 55 strains, 17 distinct phylogenetic types were identified and characterized further. A total of 14 and 6 different bacterial strains were isolated from ethanol- and lactate-fed FBRs, respectively. Sequencing of the 16S rRNA gene showed that these strains were affiliated with members of the δ-Proteobacteria, Firmicutes and Bacteroidetes The strains were affiliated with members of the genera Desulfovibrio, Desulfotomaculum, Desulfobulbus, Desulfitobacterium, Clostridium, Caloramator, Oxobacter, and Bacteroides. Many of the strains were only distantly related to previously described species and, thus, may represent novel species or genera. A number of the strains were not detected in previously employed molecular analyses of the FBR communities, and the major component of each FBR as identified in the molecular analyses were not retrieved as cultures in this study. Most of the SRB, and two of the non-SRB utilized ethanol and lactate as a source of carbon and energy, but none of the isolates grew on acetate, an intermediate in the oxidation of ethanol and lactate. PLFA analysis revealed that the FBR community members contained large amounts of saturated fatty acids. Although the PLFA analysis showed some signatures consistent with sulfate-reducing communities, it did not show any substantial difference in the microbial communities between the reactors, an outcome that was quite contrary to the culture-independent phylogenetic analyses.  相似文献   
83.
Although the mechanics of formalin fixation and antigen retrieval have been studied extensively and reviewed periodically, little attention has been directed toward conformational changes in target molecules. Formaldehyde changes the shape of tissue molecules by appending small hydroxymethyl groups to them. These adducts, in turn, can react with other tissue molecules to form crosslinks, or they can participate in a variety of reactions during tissue processing, including formation of imines, ethoxymethyl adducts, and further crosslinks. Under the influence of alcohol dehydration, fixed DNA may fragment and form a variety of depurination products. The situation becomes even more complex with short fixation times because under these conditions, the dehydrating agent used for tissue processing denatures macromolecules in other ways, most notably through rearrangement of molecular shape to move hydrophobic realms outward and hydrophilic areas inward (hydrophobic inversions). How tissue molecules are modified affects the outcome of immunohistochemical staining and prospects for restoration of antigenicity. Immunoreacitivity may be compromised because epitopes are either sterically hidden, but otherwise unaffected, or they have been altered more directly. Enzyme-based retrieval methods are best suited for the former because they literally snip the molecule apart to reveal the portions of interest. Heat-induced retrieval with buffers can demodify affected epitopes by removing adducts and breaking crosslinks. The choice of temperature and pH is usually critical for optimal retrieval. Effective temperatures are directly related to the strength of bonds-higher temperatures are needed to break stronger bonds. The pH of the retrieval solution determines the charge on the tissue molecule; the goal is to create a charge that causes the demodified molecule to assume a near natural conformation. Rational use of these concepts should lead to better control of immunohistochemical reactions.  相似文献   
84.
In June 2008, the Biological Stain Commission sponsored A Seminar on Dyes and Staining the purpose of which was twofold: first, to show that very useful information applicable to biomedical dyes and staining is available from unrelated disciplines and second, to summarize modern thinking on how dyes, solvents, and tissues interact to produce selective staining. In this introduction to the papers from the symposium, we acknowledge that biomedical dye research has declined as newer technologies have gained importance. We should point out, however, that dyes and staining still are vitally important. Moreover, needs abound for innovative studies concerned with dye analysis, synthesis, and mode of action. Concepts and tools from unrelated fields hold promise for significant breakthroughs in many areas of interest.  相似文献   
85.
86.
Burkholderia cenocepacia, a member of the Burkholderia cepacia complex, is an opportunistic pathogen that causes devastating infections in patients with cystic fibrosis. The ability of B. cenocepacia to survive within host cells could contribute significantly to its virulence in immunocompromised patients. In this study, we explored the mechanisms that enable B. cenocepacia to survive inside macrophages. We found that B. cenocepacia disrupts the actin cytoskeleton of infected macrophages, drastically altering their morphology. Submembranous actin undergoes depolymerization, leading to cell retraction. The bacteria perturb actin architecture by inactivating Rho family GTPases, particularly Rac1 and Cdc42. GTPase inactivation follows internalization of viable B. cenocepacia and compromises phagocyte function: macropinocytosis and phagocytosis are markedly inhibited, likely impairing the microbicidal and antigen‐presenting capability of infected macrophages. The type VI secretion system is essential for the bacteria to elicit these changes. This is the first report demonstrating inactivation of Rho family GTPases by a member of the B. cepacia complex.  相似文献   
87.
88.

Background  

Exported proteases are commonly associated with virulence in bacterial pathogens, yet there is a paucity of information regarding their role in Mycobacterium tuberculosis. There are five genes (mycP1-5) present within the genome of Mycobacterium tuberculosis H37Rv that encode a family of secreted, subtilisin-like serine proteases (the mycosins). The gene mycP1 (encoding mycosin-1) was found to be situated 3700 bp (four ORF's) from the RD1 deletion region in the genome of the attenuated vaccine strain M. bovis BCG (bacille de Calmette et Guérin) and was selected for further analyses due to the absence of expression in this organism.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号