首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   761篇
  免费   78篇
  839篇
  2021年   13篇
  2020年   5篇
  2016年   11篇
  2015年   30篇
  2014年   18篇
  2013年   23篇
  2012年   39篇
  2011年   34篇
  2010年   24篇
  2009年   29篇
  2008年   28篇
  2007年   34篇
  2006年   31篇
  2005年   29篇
  2004年   23篇
  2003年   35篇
  2002年   23篇
  2001年   21篇
  2000年   24篇
  1999年   18篇
  1998年   13篇
  1997年   17篇
  1996年   9篇
  1995年   9篇
  1994年   15篇
  1993年   5篇
  1992年   12篇
  1991年   16篇
  1990年   13篇
  1989年   10篇
  1988年   11篇
  1987年   10篇
  1986年   8篇
  1985年   7篇
  1984年   10篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   9篇
  1979年   5篇
  1978年   6篇
  1977年   7篇
  1976年   8篇
  1974年   6篇
  1973年   5篇
  1969年   5篇
  1968年   4篇
  1952年   5篇
  1945年   5篇
  1927年   4篇
排序方式: 共有839条查询结果,搜索用时 40 毫秒
21.
22.
23.
24.
We have determined the nucleotide sequence of a secondary λ attachment site in proAB, a site that accounts for 3% of lysogens isolated from Escherichia coli strains deleted for the primary site. Direct sequence analysis of the transducing bacteriophages carrying the left and right att junctions, as well as the recombinant pro+ phage reveals that the proAB site shares an 11-nucleotide interrupted homology with the core sequence of the primary site. We have compared the proABatt site with other secondary attachment sites to gain insights into the structural features important for λ integration.  相似文献   
25.
Trematode cercariae inhabit predictable environments and respond to trigger cues with genetically fixed releaser responses when foraging for the upstream host. The effect of light and gravity on the transmission of Echinostoma caproni cercariae to Biomphalaria glabrata was investigated experimentally. Transmission chambers were constructed of clear polyvinyl chloride pipe. Snails were constrained within the chamber to prevent movement, while permitting the cercariae to swim freely. A trial consisted of 2 infected B. glabrata shedding E. caproni cercariae placed at the center of the chamber, with 5 uninfected B. glabrata placed 10 cm on either side (or above and below) of the shedding snails as sentinels. There was no significant difference in the prevalence of infection sentinel snails in either experiment (light vs. dark or top vs. bottom); however, mean intensity was significantly higher in sentinel snails in the dark portion of the chamber (42.5 vs. 10.4; P = 0.001) and the top of the transmission chamber (66.1 vs. 38.0; P = 0.0003). There was a high correlation between the number of metacercariae collected from sentinel snails and the total number of infective units (metacercariae + unsuccessful cercariae): r = 0.992 (light vs. dark) and r = 0.957 (top vs. bottom), respectively, at cercariae densities estimated from 22 to 3,304/L. The results suggest that cercariae of E. caproni exhibit negative photo- and geotaxis in searching for a second intermediate host. Stereotypical releaser responses to environmental trigger cues (light and gravity) allow E. caproni cercariae to exploit flexible strategies for completing the life cycle consistent with the broad range second intermediate and definitive hosts used by E. caproni cercariae and adults, respectively.  相似文献   
26.
Chinese hamster lung fibroblasts, genetically engineered for the expression of rat cytochrome P450 dependent monooxygenase 1A2 and rat sulfotransferase 1C1 (V79-rCYP1A2-rSULT1C1 cells), were utilized to check for possible protective effects of beverages of plant origin, fruits, vegetables, and spices against genotoxicity induced by 2-acetylaminofluorene (AAF) or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Antigenotoxic activities of juices from spinach and red beets against AAF could be monitored with similar effectivity by the HPRT-mutagenicity test (IC(50)=0.64%; 2.57%) and alkaline single cell gel electrophoresis (comet assay; IC(50)=0.12%; 0.89%) which detects DNA strand breaks and abasic sites. Applying the comet assay, genotoxicity of PhIP could, however, be demonstrated only in the presence of hydroxyurea and 1-[beta-D-arabinofuranosyl]cytosine, known inhibitors of DNA repair synthesis. As expected, AAF and PhIP were unable to induce any genotoxic effects in the parent V79 cells. Genotoxic activity of PhIP was strongly reduced in a dose-related manner by green tea and red wine, by blueberries, blackberries, red grapes, kiwi, watermelon, parsley, and spinach, while two brands of beer, coffee, black tea, rooibos tea, morellos, black-currants, plums, red beets, broccoli (raw and cooked), and chives were somewhat less active. One brand of beer was only moderately active while white wine, bananas, white grapes, and strawberries were inactive. Similarly, genotoxicity of AAF was strongly reduced by green, black, and rooibos tea, red wine, morellos, black-currants, kiwi, watermelon, and spinach while plums, red beets, and broccoli (raw) were less potent. Broccoli cooked exerted only moderate and white wine weak antigenotoxic activity. With respect to the possible mechanism(s) of inhibition of genotoxicity, benzo[a]pyrene-7,8-dihydrodiol (BaP-7,8-OH) and N-OH-PhIP were applied as substrates for the CYP1A family and for rSULT 1C1, respectively. Morellos, black-currants, and black tea strongly reduced the genotoxicity of BaP-7,8-OH, onions, rooibos tea, and red wine were less potent while red beets and spinach were inactive. On the other hand, red beets and spinach strongly inhibited the genotoxicity of N-OH-PhIP, rooibos tea was weakly active while all other items were inactive. These results are suggestive for enzyme inhibition as mechanism of protection by complex mixtures of plant origin. Taken together, our results demonstrate that protection by beverages, fruits, and vegetables against genotoxicity of heterocyclic aromatic amines may take place within metabolically competent mammalian cells as well as under the conditions of the Salmonella/reversion assay.  相似文献   
27.
There has been increasing investigation of the national and ethnic identification of minority populations in Western societies and how far they raise questions about the success or failure of multicultural societies. Much of the political and academic discussion has, however, been premised on two assumptions. First, that ethnic minority and national identification are mutually exclusive, and, second, that national identification forms an overarching majority identity that represents consensus values. In this paper, using a large-scale nationally representative UK survey with a varied set of identity questions, and drawing on an extension of Berry's acculturation framework, we empirically test these two assumptions. We find that, among minorities, strong British national and minority identities often coincide and are not on an opposing axis. We also find that adherence to a British national identity shows cleavages within the white majority population. We further identify variation in these patterns by generation and political orientation.  相似文献   
28.
The genotoxicity of 15 polycyclic aromatic hydrocarbons was determined with the alkaline version of the comet assay employing V79 lung fibroblasts of the Chinese hamster as target cells. These cells lack the enzymes necessary to convert PAHs to DNA-binding metabolites. Surprisingly, 11 PAHs, i.e., benzo[a]pyrene (BaP), benz[a]anthracene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene, fluoranthene, anthanthrene, 11H-benzo[b]fluorene, dibenz[a,h]anthracene, pyrene, benzo[ghi]perylene and benzo[e]pyrene caused DNA strand breaks even without external metabolic activation, while naphthalene, anthracene, phenanthrene and naphthacene were inactive. When the comet assay was performed in the dark or when yellow fluorescent lamps were used for illumination the DNA-damaging effect of the 11 PAHs disappeared. White fluorescent lamps exhibit emission maxima at 334.1, 365.0, 404.7, and 435.8 nm representing spectral lines of mercury. In the case of yellow fluorescent lamps these emissions were absent. Obviously, under standard laboratory illumination many PAHs are photo-activated, resulting in DNA-damaging species. This feature of PAHs should be taken into account when these compounds are employed for the initiation of skin cancer. The genotoxicity of BaP that is metabolically activated in V79 cells stably expressing human cytochrome P450-dependent monooxygenase (CYP1A1) as well as human epoxide hydrolase (V79-hCYP1A1-mEH) could not be detected with the comet assay performed under yellow light. Likewise the DNA-damaging effect of r-7,t-8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (anti-BaPDE) observed with the comet assay was only weak. However, upon inhibition of nucleotide excision repair (NER), which is responsible for the removal of stable DNA adducts caused by anti-BaPDE, the tail moment rose 3.4-fold in the case of BaP and 12.9-fold in the case of anti-BaPDE. These results indicate that the genotoxicity of BaP and probably of other compounds producing stable DNA adducts are reliably detected with the comet assay only when NER is inhibited.  相似文献   
29.
Ethology, the evolutionary science of behaviour, assumes that natural selection shapes behaviour and its neural substrates in humans and other animals. In this view, the nervous system of any animal comprises a suite of morphological and behavioural adaptations for solving specific information processing problems posed by the physical or social environment. Since the allocation of behaviour often reflects economic optimization of evolutionary fitness subject to physical and cognitive constraints, neurobiological studies of reward, punishment, motivation and decision making will profit from an appreciation of the information processing problems confronted by animals in their natural physical and social environments.  相似文献   
30.
Social hierarchy is a fact of life for many animals. Navigating social hierarchy requires understanding one''s own status relative to others and behaving accordingly, while achieving higher status may call upon cunning and strategic thinking. The neural mechanisms mediating social status have become increasingly well understood in invertebrates and model organisms like fish and mice but until recently have remained more opaque in humans and other primates. In a new study in this issue, Noonan and colleagues explore the neural correlates of social rank in macaques. Using both structural and functional brain imaging, they found neural changes associated with individual monkeys'' social status, including alterations in the amygdala, hypothalamus, and brainstem—areas previously implicated in dominance-related behavior in other vertebrates. A separate but related network in the temporal and prefrontal cortex appears to mediate more cognitive aspects of strategic social behavior. These findings begin to delineate the neural circuits that enable us to navigate our own social worlds. A major remaining challenge is identifying how these networks contribute functionally to our social lives, which may open new avenues for developing innovative treatments for social disorders.
“Observing the habitual and almost sacred ‘pecking order’ which prevails among the hens in his poultry yard—hen A pecking hen B, but not being pecked by it, hen B pecking hen C and so forth—the politician will meditate on the Catholic hierarchy and Fascism.” —Aldous Huxley, Point Counter Point (1929)
From the schoolyard to the boardroom, we are all, sometimes painfully, familiar with the pecking order. First documented by the Norwegian zoologist Thorleif Schjelderup-Ebbe in his PhD thesis on social status in chickens in the 1920s, a pecking order is a hierarchical social system in which each individual is ranked in order of dominance [1]. In chickens, the top hen can peck all lower birds, the second-ranking bird can peck all birds ranked below her, and so on. Since it was first coined, the term has become widely applied to any such hierarchical system, from business, to government, to the playground, to the military.Social hierarchy is a fact of life not only for humans and chickens but also for most highly social, group-living animals. Navigating social hierarchies and achieving dominance often appear to require cunning, intelligence, and strategic social planning. Indeed, the Renaissance Italian politician and writer Niccolo Machiavelli argued in his best-known book “The Prince” that the traits most useful for attaining and holding on to power include manipulation and deception [2]. Since then, the term “Machiavellian” has come to signify a person who deceives and manipulates others for personal advantage and power. 350 years later, Frans de Waal applied the term Machiavellian to social maneuvering by chimpanzees in his book Chimpanzee Politics [3]. De Waal argued that chimpanzees, like Renaissance Italian politicians, apply guile, manipulation, strategic alliance formation, and deception to enhance their social status—in this case, not to win fortune and influence but to increase their reproductive success (which is presumably the evolutionary origin of status-seeking in Renaissance Italian politicians as well).The observation that navigating large, complex social groups in chimpanzees and many other primates seems to require sophisticated cognitive abilities spurred the development of the social brain hypothesis, originally proposed to explain why primates have larger brains for their body size than do other animals [4],[5]. Since its first proposal, the social brain hypothesis has accrued ample evidence endorsing the connections between increased social network complexity, enhanced social cognition, and larger brains. For example, among primates, neorcortex size, adjusted for the size of the brain or body, varies with group size [6],[7], frequency of social play [8], and social learning [9].Of course, all neuroscientists know that when it comes to brains, size isn''t everything [10]. Presumably social cognitive functions required for strategic social behavior are mediated by specific neural circuits. Here, we summarize and discuss several recent discoveries, focusing on an article by Noonan and colleagues in the current issue, which together begin to delineate the specific neural circuits that mediate our ability to navigate our social worlds.Using structural magnetic resonance imaging (MRI), Bickart and colleagues showed that the size of the amygdala—a brain nucleus important for emotion, vigilance, and rapid behavioral responses—is correlated with social network size in humans [11]. Subsequent studies showed similar relationships for other brain regions implicated in social function, including the orbitofrontal cortex [12] and ventromedial prefrontal cortex [13]. Indeed, one study even found an association between grey matter density in the superior temporal sulcus (STS) and temporal gyrus and an individual''s number of Facebook friends [14]. Collectively, these studies suggest that the number and possibly the complexity of relationships one maintains varies with the structural organization of a specific network of brain regions, which are recruited when people perform tests of social cognition such as recognizing faces or inferring others'' mental states [15],[16]. These studies, however, do not reveal whether social complexity actively changes these brain areas through plasticity or whether individual differences in the structure of these networks ultimately determines social abilities.To address this question, Sallet and colleagues experimentally assigned rhesus macaques to social groups of different sizes and then scanned their brains with MRI [17]. The authors found significant positive associations between social network size and morphology in mid-STS, rostral STS, inferior temporal (IT) gyrus, rostral prefrontal cortex (rPFC), temporal pole, and amygdala. The authors also found a different region in rPFC that scaled positively with social rank; as grey matter in this region increased, so did the monkey''s rank in the hierarchy. As in the human studies described previously, many of these regions are implicated in various aspects of social cognition and perception [18]. These findings endorse the idea that neural plasticity is engaged in specifically social brain areas in response to the demands of the social environment, changing these areas structurally according to an individual''s experiences with others.Sallet and colleagues also examined spontaneous coactivation among these regions using functional MRI (fMRI). Measures of coactivation are thought to reflect coupling between regions [19],[20]; these measures are observable in many species [21],[22] and vary according to behavior [23],[24], genetics [25], and sex [26], suggesting that coactivation may underlie basic neural function and interaction between brain regions. The authors found that coactivation between the STS and rPFC increased with social network size and that coactivation between IT and rPFC increased with social rank. These findings show that not only do structural changes occur in these regions to meet the demands of the social environment but these structural changes mediate changes in function as well.One important question raised by the study by Sallet and colleagues is whether changes in the structure and function of social brain areas are specific outcomes of social network size or of dealing with social hierarchy. After all, larger groups offer more opportunity for a larger, more despotic pecking order. In the current volume, Noonan and colleagues address this question directly by examining the structural and functional correlates of social status in macaques independently of social group size [27]. The authors collected MRI scans from rhesus macaques and measured changes in grey matter associated with social dominance. By scanning monkeys of different ranks living in groups of different sizes, the authors were able to cleave the effects of social rank from those of social network size (Figure 1).Open in a separate windowFigure 1Brain regions in rhesus macaques related to social environment.Primary colors indicate brain regions in which morphometry tracks social network size. Pastel colors indicate brain regions in which morphometry tracks social status in the hierarchy. Regions of interest adapted from [48], overlaid on Montreal Neurological Institute (MNI) macaque template [49].The authors found a network of regions in which grey matter measures varied with social rank; these regions included the bilateral central amygdala, bilateral brainstem (between the medulla and midbrain, including parts of the raphe nuclei), and hypothalamus, which varied positively with dominance, and regions in the basal ganglia, which varied negatively with social rank. These regions have been implicated in social rank functions across a number of species [28][32]. Importantly, these relationships were unique to social status. There was no relationship between grey matter in these subcortical areas and social network size, endorsing a specific role in social dominance-related behavior. Nevertheless, grey matter in bilateral mid-STS and rPFC varied with both social rank and social network size, as reported previously. These findings demonstrate that specific brain areas uniquely mediate functions related to social hierarchy, whereas others may subserve more general social cognitive processes.Noonan and colleagues next probed spontaneous coactivation using fMRI to examine whether functional coupling between any of these regions varied with social status. They found that the more subordinate an animal, the stronger the functional coupling between multiple regions related to dominance. These results suggest that individual differences in social status are functionally observable in the brain even while the animal is at rest and not engaged in social behavior. These findings suggest that structural changes associated with individual differences in social status alter baseline brain function, consistent with the idea that the default mode of the brain is social [33] and that the sense of self and perhaps even awareness emerge from inwardly directed social reasoning [34].These findings resonate with previous work on the neural basis of social dominance in other vertebrates. In humans, for example, activity in the amygdala tracks knowledge of social hierarchy [28],[35] and, further, shows activity patterns that uniquely encode social rank and predict relevant behaviors [28]. Moreover, recent research has identified a specific region in the mouse hypothalamus, aptly named the “hypothalamic attack area” [36],[37]. Stimulating neurons in this area immediately triggers attacks on other mice and even an inflated rubber glove, while inactivating these neurons suppresses aggression [38]. In the African cichlid fish Haplochromis burtoni, a change in the social status of an individual male induces a reversible change in the abundance of specialized neurons in the hypothalamus that communicate hormonally with the pituitary and gonads [39]. Injections of this hormone in male birds after an aggressive territorial encounter amplifies the normal subsequent rise in testosterone [40]. Serotonin neurons in the raphe area of the brainstem also contribute to dominance-related behaviors in fish [29],[31] and aggression in monkeys [41].Despite these advances, there are still gaps in our understanding of how these circuits mediate status-related behaviors. Though regions in the amygdala, brainstem, and hypothalamus vary structurally and functionally with social rank, it remains unknown precisely how they contribute to or respond to social status. For example, though amygdala function and structure correlates with social status in both humans and nonhuman primates [27],[28],[35],[42], it remains unknown which aspects of dominance this region contributes to or underlies. One model suggests that the amygdala contributes to learning or representing one''s own status within a social hierarchy [28],[35]. Alternatively, the amygdala could contribute to behaviors that support social hierarchy, including gaze following [43] and theory of mind [44]. Lastly, the amygdala could contribute to social rank via interpersonal behaviors or personality traits, such as aggression [45], grooming [45], or fear responses [46],[47]. Future work will be critical to determine how signals in these regions relate to social status; direct manipulation of these regions, possibly via microstimulation, larger-scale brain stimulation (e.g., transcranial magnetic stimulation and transcranial direct current stimulation), or temporary lesions, will be critical to better understand these relationships.The work by Noonan and colleagues suggests new avenues for exploring how the brain both responds to and makes possible social hierarchy in nonhuman primates and humans. The fact that the neural circuits mediating dominance and social networking behavior can be identified and measured from structural and functional brain scans even at rest suggests the possibility that similar measures can be made in humans. Although social status is much more complex in people than it is in monkeys or fish, it is just as critical for us and most likely depends on shared neural circuits. Understanding how these circuits work, how they develop, and how they respond to the local social environment may help us to understand and ultimately treat disorders, like autism, social anxiety, or psychopathy, that are characterized by impaired social behavior and cognition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号