首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
  国内免费   1篇
  2014年   2篇
  2008年   3篇
  2006年   1篇
  2002年   1篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
排序方式: 共有30条查询结果,搜索用时 328 毫秒
21.
An alternativeN-glycosylation pathway using Glc1–3Man5GlcNAc2 as a donor to be transferred to a protein acceptor is found either in Man-P-Dol synthase deficient cells or in wild type CHO cells grown in energy deprivation conditions. Discrimination between oligomannosides of this alternative pathway and oligomannosides of the major one containing the same number of sugar residues Man6–8GlcNAc2 required structural studies. Taking advantage of the specific chromatographic behaviour of glucosylated oligomannosides, in pellicular high pH anion exchange chromatography, we developed a one-step method for the identification of the alternativeN-glycosylation pathway compounds differing from those of the major one.Abbreviations HPAEC high pH anion exchange chromatography - endo H endo betaN-acetylglucosaminidase H - PNGaseF peptideN-glycosidase F - M2 Man2GlcNAc2 - M4 Man4GlcNAc2 - M5 Man5GlcNAc2 - G1M5 Glc1Man5GlcNAc2 - G2M5 Glc2Man5GlcNAc2 - G3M5 Glc3Man5GlcNAc2 - M6 Man6GlcNAc2 - M8 Man8GlcNAc2 - M9 Man9GlcNAc2 - G1M9 Glc1Man9GlcNAc2 - G2M9 Glc2Man9GlcNAc2 - G3M9 Glc3Man9GlcNAc2 To whom correspondence should be addressed.  相似文献   
22.
23.
In a series of studies, we have shown that Candida albicans synthesizes a glycolipid, phospholipomannan (PLM), which reacted with antibodies specific for beta-1,2-oligomannosides and was biosynthetically labeled by [(3)H]mannose, [(3)H]palmitic acid, and [(32)P]phosphorus. PLM has also been shown to be released from the C. albicans cell wall and to bind to and stimulate macrophage cells. In this study, we show by thin layer chromatography scanning of metabolically radiolabeled extracts that the C. albicans PLM corresponds to a family of mannose and inositol co-labeled glycolipids. We describe the purification process of the molecule and the release of its glycan fraction through alkaline hydrolysis. Analysis of this glycan fraction by radiolabeling and methylation-methanolysis confirmed the presence of inositol and of 1, 2-linked mannose units. NMR studies evidenced linear chains of beta-1,2-oligomannose as the major PLM components. Mass spectrometry analysis revealed that these chains were present in phosphoinositolmannosides with degrees of polymerization varying from 8 to 18 sugar residues. The PLM appears as a new type of eukaryotic inositol-tagged glycolipid in relationship to both the absence of glucosamine and the organization of its glycan chains. This first structural evidence for the presence of beta-1, 2-oligomannosides in a glycoconjugate other than the C. albicans phosphopeptidomannan may have some pathophysiological relevance to the adhesive, protective epitope, and signaling properties thus far established for these residues.  相似文献   
24.
In a previous report it was shown that galactosyl transferase activity after blotting from acrylamide gel was present in a molecular weight range of less than 14 kDa, in Triton X-100 (1). Molecular sieve chromatography on Superose 12, in the presence of Triton X-100, gave the same result. The low molecular weight activity peak was eluted together with peptides as a part of the covalent structure of the enzyme or as absolutely requires effectors. Peptide mapping showed a new poly-lysine-like peptide and a new hydrophobic peptide in this low molecular weight activity peak as effectors of the enzyme inside its hydrophobic environment.  相似文献   
25.
The heat-stable acid-soluble phosphoglycoprotein component PP3 was isolated from the bovine milk proteose peptone fraction by concanavalin A affinity chromatography. Glycopeptides from the ConA-bound fraction corresponding to the component PP3 were obtained by Pronase digestion and were separated by gel filtration into high and low-molecular-mass glycopeptides. In a previous work, we have investigated the structure of the N-glycans from the high-molecular-mass glycopeptides [Girardet et al. (1995) Eur J Biochem 234: 939–46]. Here, we describe the structure of the O-glycans from the low-molecular-mass glycopeptides. By combining methylation analysis, mass spectrometry, 400 MHz 1H-NMR spectroscopy and peptide sequence analysis, we show that the low-molecular-mass fraction contains several neutral glycopeptides. A mixture of the following three glycan structures linked to the Thr86 has been identified: GalNac1-O-Thr, Gal(1-3)GalNAc1-O-Thr and Gal(1-4)GlcNAc(1-6)[Gal1-3)]GalNAc1-O-Thr. © 1998 Rapid Science Ltd  相似文献   
26.
The nature of the cytoplasmic pathway of starch biosynthesis was investigated in the model glaucophyte Cyanophora paradoxa. The storage polysaccharide granules are shown to be composed of both amylose and amylopectin fractions, with a chain length distribution and crystalline organization similar to those of green algae and land plant starch. A preliminary characterization of the starch pathway demonstrates that Cyanophora paradoxa contains several UDP-glucose-utilizing soluble starch synthase activities related to those of the Rhodophyceae. In addition, Cyanophora paradoxa synthesizes amylose with a granule-bound starch synthase displaying a preference for UDP-glucose. A debranching enzyme of isoamylase specificity and multiple starch phosphorylases also are evidenced in the model glaucophyte. The picture emerging from our biochemical and molecular characterizations consists of the presence of a UDP-glucose-based pathway similar to that recently proposed for the red algae, the cryptophytes, and the alveolates. The correlative presence of isoamylase and starch among photosynthetic eukaryotes is discussed.  相似文献   
27.
The nature of the cytoplasmic pathway of starch biosynthesis was investigated in the model heterotrophic dinoflagellate Crypthecodinium cohnii. The storage polysaccharide granules were shown to be composed of both amylose and amylopectin fractions with a chain length distribution and crystalline organization very similar to those of green algae and land plant starch. Preliminary characterization of the starch pathway demonstrated that C. cohnii contains multiple forms of soluble starch synthases and one major 110-kDa granule-bound starch synthase. All purified enzymes displayed a marked substrate preference for UDP-glucose. At variance with most other microorganisms, the accumulation of starch in the dinoflagellate occurs during early and mid-log phase, with little or no synthesis witnessed when approaching stationary phase. In order to establish a genetic system allowing the study of cytoplasmic starch metabolism in eukaryotes, we describe the isolation of marker mutations and the successful selection of random recombinant populations after homothallic crosses.  相似文献   
28.
Isocitrate lyase is a key enzyme of the glyoxylate cycle. This cycle plays an essential role in cell growth on acetate, and is important for gluconeogenesis as it bypasses the two oxidative steps of the tricarboxylic acid (TCA) cycle in which CO2 is evolved. In this paper, a null icl mutant of the green microalga Chlamydomonas reinhardtii is described. Our data show that isocitrate lyase is required for growth in darkness on acetate (heterotrophic conditions), as well as for efficient growth in the light when acetate is supplied (mixotrophic conditions). Under these latter conditions, reduced acetate assimilation and concomitant reduced respiration occur, and biomass composition analysis reveals an increase in total fatty acid content, including neutral lipids and free fatty acids. Quantitative proteomic analysis by 14N/15N labelling was performed, and more than 1600 proteins were identified. These analyses reveal a strong decrease in the amounts of enzymes of the glyoxylate cycle and gluconeogenesis in parallel with a shift of the TCA cycle towards amino acid synthesis, accompanied by an increase in free amino acids. The decrease of the glyoxylate cycle and gluconeogenesis, as well as the decrease in enzymes involved in β–oxidation of fatty acids in the icl mutant are probably major factors that contribute to remodelling of lipids in the icl mutant. These modifications are probably responsible for the elevation of the response to oxidative stress, with significantly augmented levels and activities of superoxide dismutase and ascorbate peroxidase, and increased resistance to paraquat.  相似文献   
29.
The capsular polysaccharide produced by the thermophilic cyanobacterium Mastigocladus laminosus has been subjected to a specific degradation with lithium in ethylenediamine. The released undecasaccharide attached to one unit of tetrahydroxycyclopentanecarboxylic acid has been characterized by a combination of 2D nuclear magnetic resonance spectroscopy, mass spectrometry, monosaccharidic composition and linkage analyses. From the overlap of the structure of this oligosaccharide with previously identified di-, tri- and pentasaccharides released by mild acid hydrolysis, the capsular polysaccharide was deduced to have a pentadecasaccharide repeating unit with the following structure:  相似文献   
30.
Five variants of mouse serum transferrin (mTf, designated mTf-I to mTf-V) with respect to carbohydrate composition have been isolated by DEAE-cellulose chromatography in the following relative percentages: mTf-I: 0.55; mTf-II: 0.79; mTf-III: 71.80; mTf-VI: 21.90 and mTf-V: 4.96. The primary structures of the major glycans from mTf-III and mTf-IV were determined by methylation analysis and 1H-nuclear magnetic resonance (NMR) spectroscopy. All glycans possessed a common trimannosyl-N,N′-diacetylchitobiose core. From the glycovariant mTf-III two isomers of a conventional biantennary N-acetyllactosamine type were isolated, in which two N-glycolylneuraminic acid (Neu5Gc) residues are linked to galactose either by a (α2-6) or (α2-3) linkage. A subpopulation of this glycovariant contains a fucose residue (α1-6)-linked to GlcNAc-1. The structure of the major glycan found in variant mTf-IV contained an additional Neu5Gc and possessed the following new type of linkage: Neu5Gc(α2-3)Gal(β1-3)[Neu5Gc(α2-6)]GlcNAc(β1-2)Man(α1-3). In addition to this glycan, a minor compound contained the same antennae linked to Man(α1-6). In fraction mTf-V, which was found to be very heterogeneous by 1H NMR analysis, carbohydrate composition and methylation analysis suggested the presence of tri′-antennary glycans sialylated by Neu5Gc α-2,6- and α-2,3-linked to the terminal galactose residues. In summary, mTf glycans differed from those of other analyzed mammalian transferrins by the presence of Neu5Gc and by a Neu5Gc(α2-6)GlcNAc linkage in trisialylated biantennary structures, reflecting in mouse liver, a high activity of CMP-Neu5Ac hydroxylase and (α2-6)GlcNAc sialyltransferase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号