首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   387篇
  免费   33篇
  2021年   5篇
  2020年   4篇
  2017年   4篇
  2016年   10篇
  2015年   7篇
  2014年   8篇
  2013年   12篇
  2012年   12篇
  2011年   27篇
  2010年   15篇
  2009年   18篇
  2008年   21篇
  2007年   23篇
  2006年   16篇
  2005年   16篇
  2004年   11篇
  2003年   9篇
  2002年   15篇
  2001年   4篇
  2000年   12篇
  1999年   8篇
  1998年   4篇
  1997年   6篇
  1995年   6篇
  1994年   3篇
  1991年   9篇
  1990年   9篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   10篇
  1984年   3篇
  1983年   4篇
  1982年   5篇
  1980年   7篇
  1979年   6篇
  1977年   5篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1973年   3篇
  1972年   7篇
  1971年   3篇
  1969年   6篇
  1967年   2篇
  1966年   7篇
  1965年   3篇
  1960年   2篇
  1930年   2篇
排序方式: 共有420条查询结果,搜索用时 31 毫秒
41.
The Arabidopsis AtMTP family of genes encode proteins of the cation diffusion facilitator (CDF) family, with several members having roles in metal tolerances. Four of the 11 proteins in the family form a distinct cluster on a phylogenetic tree and are closely related to ShMTP8, a CDF identified in the tropical legume Stylosanthes hamata that is implicated in the transport of Mn(2+) into the vacuole as a tolerance mechanism. Of these four genes, AtMTP11 was the most highly expressed member of the Arabidopsis subgroup. When AtMTP11 was expressed in Saccharomyces cerevisiae, it conferred Mn(2+) tolerance and transported Mn(2+) by a proton-antiport mechanism. A mutant of Arabidopsis with a disrupted AtMTP11 gene (mtp11) was found to have increased sensitivity to Mn(2+) but not to Cu(2+) or Zn(2+). At a non-toxic but sufficient Mn(2+) supply (basal), the mutant accumulated more Mn(2+) than the wild type, but did not show any obvious deleterious effects on growth. When grown with Mn(2+) supplies that ranged from basal to toxic, the mutant accumulated Mn(2+) concentrations in shoots similar to those in wild-type plants, despite showing symptoms of Mn(2+) toxicity. AtMTP11 fused to green fluorescent protein co-localized with a reporter specific for pre-vacuolar compartments. These findings provide evidence for Mn(2+)-specific transport activity by AtMTP11, and implicate the pre-vacuolar compartments in both Mn(2+) tolerance and Mn(2+) homeostasis mechanisms of Arabidopsis.  相似文献   
42.
43.
Pathways of electron transport to periplasmic nitrate (NapA) and nitrite (NrfA) reductases have been investigated in Campylobacter jejuni, a microaerophilic food-borne pathogen. The nap operon is unusual in lacking napC (encoding a tetra-haem c-type cytochrome) and napF, but contains a novel gene of unknown function, napL. The iron-sulphur protein NapG has a major role in electron transfer to the NapAB complex, but we show that slow nitrate-dependent growth of a napG mutant can be sustained by electron transfer from NrfH, the electron donor to the nitrite reductase NrfA. A napL mutant possessed approximately 50% lower NapA activity than the wild type but showed normal growth with nitrate as the electron acceptor. NrfA was constitutive and was shown to play a role in protection against nitrosative stress in addition to the previously identified NO-inducible single domain globin, Cgb. However, nitrite also induced cgb expression in an NssR-dependent manner, suggesting that growth of C. jejuni with nitrite causes nitrosative stress. This was confirmed by lack of growth of cgb and nssR mutants, and slow growth of the nrfA mutant, in media containing nitrite. Thus, NrfA and Cgb together provide C. jejuni with constitutive and inducible components of a robust defence against nitrosative stress.  相似文献   
44.
Genome-wide association studies (GWAS) have identified 14 tagging single nucleotide polymorphisms (tagSNPs) that are associated with the risk of colorectal cancer (CRC), and several of these tagSNPs are near bone morphogenetic protein (BMP) pathway loci. The penalty of multiple testing implicit in GWAS increases the attraction of complementary approaches for disease gene discovery, including candidate gene- or pathway-based analyses. The strongest candidate loci for additional predisposition SNPs are arguably those already known both to have functional relevance and to be involved in disease risk. To investigate this proposition, we searched for novel CRC susceptibility variants close to the BMP pathway genes GREM1 (15q13.3), BMP4 (14q22.2), and BMP2 (20p12.3) using sample sets totalling 24,910 CRC cases and 26,275 controls. We identified new, independent CRC predisposition SNPs close to BMP4 (rs1957636, P = 3.93×10(-10)) and BMP2 (rs4813802, P = 4.65×10(-11)). Near GREM1, we found using fine-mapping that the previously-identified association between tagSNP rs4779584 and CRC actually resulted from two independent signals represented by rs16969681 (P = 5.33×10(-8)) and rs11632715 (P = 2.30×10(-10)). As low-penetrance predisposition variants become harder to identify-owing to small effect sizes and/or low risk allele frequencies-approaches based on informed candidate gene selection may become increasingly attractive. Our data emphasise that genetic fine-mapping studies can deconvolute associations that have arisen owing to independent correlation of a tagSNP with more than one functional SNP, thus explaining some of the apparently missing heritability of common diseases.  相似文献   
45.
Mathematical models have predicted the existence of Po(2) gradients between erythrocytes in capillaries in the usual case where plasma contributes substantial resistance to oxygen diffusion. According to theoretical predictions, these gradients could be detected as rapid Po(2) fluctuations (erythrocyte-associated transients, EATs) along the capillary. However, verification of a model and correct choice of its parameters can be made only on the basis of direct experimental measurements. We used phosphorescence quenching microscopy to measure Po(2) in 52 capillaries of rat mesentery to obtain plasma Po(2) values 100 times/s at a given point along a capillary. A 532-nm laser generated 10-micros pulses of light, concentrated by a x100 objective, onto a spot 0.9 microm in diameter. The presence of erythrocytes in the excitation region was detected on the basis of phosphorescence amplitude (PA), proportional to the amount of plasma encountered by the laser beam, and on the basis of the intensity of transmitted laser light (LT), detected by a photodiode placed under the capillary. The data revealed correlated waveforms in PA, LT, and Po(2) in capillaries. The magnitude of the Po(2) gradients between erythrocytes and plasma was correlated with average capillary Po(2). EATs in Po(2) were more readily detected in capillaries with relatively low oxygenation. The correlation coefficients between PA and Po(2) for the half of the capillaries (n = 26) below the median Po(2) (mean Po(2) = 17 mmHg; R = -0.72) was higher than that for the other half (mean Po(2) = 39 mmHg; R = -0.38). These results support the theoretical predictions of EATs and plasma Po(2) gradients in capillaries.  相似文献   
46.
47.
Glutathione (GSH), a major biological antioxidant, maintains redox balance in prokaryotes and eukaryotic cells and forms exportable conjugates with compounds of pharmacological and agronomic importance. However, no GSH transporter has been characterized in a prokaryote. We show here that a heterodimeric ATP-binding cassette-type transporter, CydDC, mediates GSH transport across the Escherichia coli cytoplasmic membrane. In everted membrane vesicles, GSH is imported via an ATP-driven, protonophore-insensitive, orthovanadate-sensitive mechanism, equating with export to the periplasm in intact cells. GSH transport and cytochrome bd quinol oxidase assembly are abolished in the cydD1 mutant. Glutathione disulfide (GSSG) was not transported in either Cyd(+) or Cyd(-) strains. Exogenous GSH restores defective swarming motility and benzylpenicillin sensitivity in a cydD mutant and also benzylpenicillin sensitivity in a gshA mutant defective in GSH synthesis. Overexpression of the cydDC operon in dsbD mutants defective in disulfide bond formation restores dithiothreitol tolerance and periplasmic cytochrome b assembly, revealing redundant pathways for reductant export to the periplasm. These results identify the first prokaryotic GSH transporter and indicate a key role for GSH in periplasmic redox homeostasis.  相似文献   
48.
Asthma is a disease characterized by reversible airway obstruction. An additional hallmark of chronic asthma is altered wound healing that leads to airway remodeling. Although beta-agonists are effective in treating the bronchospasm associated with asthma, their effects on airway wound healing, which are related to airway remodeling, are unknown. It has been demonstrated that beta-agonists can alter the signaling of epidermal growth factor (EGF) receptors, which are important in timely wound healing. Therefore, we hypothesized that the beta-agonist isoproterenol would affect wound healing. Using an in vitro scrape wound assay, we demonstrated that isoproterenol attenuates EGF-stimulated wound healing in 16HBE airway epithelial cell cultures. Through experiments with forskolin and cells overexpressing beta2-adrenergic receptor-yellow fluorescent protein, we show that attenuation is due to the accumulation of cAMP and the involvement of at least one additional pathway. Furthermore, attenuation is not due to a direct effect on the EGF receptor or to an alteration of the ERK/MAPK signaling cascade. Based on these results, we propose that isoproterenol may exert its effects through other MAPK signaling pathways (JNK and/or p38) or through parallel mechanisms. These results also demonstrate a problem of potential therapeutic relevance in which a commonly prescribed medication may alter wound healing and contribute to the remodeling of asthmatic airways.  相似文献   
49.
Atlantic cod Gadus morhua larvae reached four‐fold (at low larval density) to 11 fold higher body mass (high larval density) at 50 days post hatch (dph) when fed zooplankton rather than enriched rotifers. A short period (22–36 dph) of dietary change affected larval growth positively if changed from enriched rotifers to natural zooplankton and negatively if prey type changed vice versa. Overall survival did not differ between the two larval groups at low larval density, but at high density the rotifer group had a higher overall survival (10·8% v. 8·9%). Long‐term growth was affected significantly by larval diet in favour of the zooplankton diet; juveniles reached a 23% higher mass in a 12 week growth period. No difference in growth performance was found between juveniles fed natural zooplankton during the larval period for 36, 22 or 14 days, but all these juveniles performed significantly better compared with the rotifer‐fed group. These findings suggest that optimal diet during a short period in the larval period can result in improved growth in both the larval and juvenile period. Improved rotifer quality may, therefore, hold a large potential for growth improvement in this species.  相似文献   
50.
Targeting of axons and dendrites to particular synaptic laminae is an important mechanism by which precise patterns of neuronal connectivity are established. Although axons target specific laminae during development, dendritic lamination has been thought to occur largely by pruning of inappropriately placed arbors. We discovered by in vivo time-lapse imaging that retinal ganglion cell (RGC) dendrites in zebrafish show growth patterns implicating dendritic targeting as a mechanism for contacting appropriate synaptic partners. Populations of RGCs labeled in transgenic animals establish distinct dendritic strata sequentially, predominantly from the inner to outer retina. Imaging individual cells over successive days confirmed that multistratified RGCs generate strata sequentially, each arbor elaborating within a specific lamina. Simultaneous imaging of RGCs and subpopulations of presynaptic amacrine interneurons revealed that RGC dendrites appear to target amacrine plexuses that had already laminated. Dendritic targeting of prepatterned afferents may thus be a novel mechanism for establishing proper synaptic connectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号