首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   7篇
  79篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2016年   3篇
  2015年   4篇
  2014年   12篇
  2013年   6篇
  2012年   6篇
  2011年   1篇
  2010年   5篇
  2009年   1篇
  2008年   8篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2000年   6篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
31.
32.

Background

Feather pecking is a major welfare issue in laying hen industry that leads to mortality. Due to a ban on conventional cages in the EU and on beak trimming in some countries of the EU, feather pecking will become an even bigger problem. Its severity depends both on the victim receiving pecking and on its group mates inflicting pecking (indirect effects), which together determine plumage condition of the victim. Plumage condition may depend, therefore, on both the direct genetic effect of an individual itself and on the indirect genetic effects of its group mates. Here, we present estimated genetic parameters for direct and indirect effects on plumage condition of different body regions in two purebred layer lines, and estimates of genetic correlations between body regions.

Methods

Feather condition scores (FCS) were recorded at 40 weeks of age for neck, back, rump and belly and these four scores were added-up into a total FCS. A classical animal model and a direct–indirect effects model were used to estimate genetic parameters for FCS. In addition, a bivariate model with mortality (0/1) was used to account for mortality before recording FCS. Due to mortality during the first 23 weeks of laying, 5363 (for W1) and 5089 (for WB) FCS records were available.

Results

Total heritable variance for FCS ranged from 1.5% to 9.8% and from 9.8% to 53.6% when estimated respectively with the classical animal and the direct–indirect effects model. The direct–indirect effects model had a significantly higher likelihood. In both lines, 70% to 94% of the estimated total heritable variation in FCS was due to indirect effects. Using bivariate analysis of FCS and mortality did not affect estimates of genetic parameters. Genetic correlations were high between adjacent regions for FCS on neck, back, and rump but moderate to low for belly with other regions.

Conclusion

Our results show that 70% to 94% of the heritable variation in FCS relates to indirect effects, indicating that methods of genetic selection that include indirect genetic effects offer perspectives to improve plumage condition in laying hens. This, in turn could reduce a major welfare problem.  相似文献   
33.
Bergsma R  Kanis E  Knol EF  Bijma P 《Genetics》2008,178(3):1559-1570
Social interactions among individuals are ubiquitous both in animals and in plants, and in natural as well as domestic populations. These interactions affect both the direction and the magnitude of responses to selection and are a key factor in evolutionary success of species and in the design of breeding schemes in agriculture. At present, however, very little is known of the contribution of social effects to heritable variance in trait values. Here we present estimates of the direct and social genetic variance in growth rate, feed intake, back fat thickness, and muscle depth in a population of 14,032 domestic pigs with known pedigree. Results show that social effects contribute the vast majority of heritable variance in growth rate and feed intake in this population. Total heritable variance expressed relative to phenotypic variance was 71% for growth rate and 70% for feed intake. These values clearly exceed the usual range of heritability for those traits. Back fat thickness and muscle depth showed no heritable variance due to social effects. Our results suggest that genetic improvement in agriculture can be substantially advanced by redirecting breeding schemes, so as to capture heritable variance due to social effects.  相似文献   
34.
The mammalian in vivo micronucleus assay is widely used as part of the genotoxicity testing battery required during the development of new drugs. As such, the in vivo micronucleus assay has been used in a battery of assays for the assessment of cigarette ingredients or design modifications to help ensure that there is no increase in risk or any new risk introduced by these additions or modifications. The present series of studies was conducted to optimize and evaluate this assay for the assessment of the effects of mainstream smoke on the micronucleus frequency in the bone marrow and peripheral blood of rats. In a first experiment, the optimal conditions for performing the micronucleus assay in these tissues were determined. This was done by use of two compounds known for their micronucleus-inducing activity, i.e., the clastogen cyclophosphamide and the aneugen colchicine. In a second experiment, the effects of tube restraint on untreated control rats were investigated. In a third experiment, the optimal conditions were used to assess the clastogenic/aneugenic activity of cigarette smoke in Sprague-Dawley rats. The rat micronucleus assay in both bone marrow and peripheral blood is able to detect clastogenic and aneugenic activity. The flow cytometric determination of micronucleated cells in rat blood is at least as sensitive as determinations in bone marrow. No statistically significant differences were observed in micronucleus frequencies between rats with and without the additional stress of tube restraint; however, the cautious approach would be to use a fresh-air-exposed group (with tube restraint) as the negative control in inhalation experiments. Using the conditions identified as optimal in the above-mentioned experiments, the micronucleus assay was not able to detect effects induced by smoke from conventional cigarettes. Nevertheless, the micronucleus assay will remain a valuable tool as part of a testing battery used to investigate possible adverse effects related to product modifications.  相似文献   
35.
Ellen ED  Muir WM  Teuscher F  Bijma P 《Genetics》2007,176(1):489-499
Livestock populations are usually kept in groups. As a consequence, social interactions among individuals affect productivity, health, and welfare. Current selection methods (individual selection), however, ignore those interactions and yield suboptimal or in some cases even negative responses. In principle, selection between groups instead of individuals offers a solution, but has rarely been adopted in practice for two reasons. First, the relationship between group selection theory and common animal breeding concepts, such as the accuracy of selection, is unclear. Second, application of group selection requires keeping selection candidates in groups, which is often undesirable in practice. This work has two objectives. First, we derive expressions for the accuracy of individual and group selection, which provides a measurement of quality for those methods. Second, we investigate the opportunity to improve traits affected by interactions by using information on relatives kept in family groups, while keeping selection candidates individually. The accuracy of selection based on relatives is shown to be an analogy of the classical expression for traits not affected by interactions. Our results show that selection based on relatives offers good opportunities for effective genetic improvement of traits affected by interactions.  相似文献   
36.
37.

Background

Since the recommendations on group housing of mink (Neovison vison) were adopted by the Council of Europe in 1999, it has become common in mink production in Europe. Group housing is advantageous from a production perspective, but can lead to aggression between animals and thus raises a welfare issue. Bite marks on the animals are an indicator of this aggressive behaviour and thus selection against frequency of bite marks should reduce aggression and improve animal welfare. Bite marks on one individual reflect the aggression of its group members, which means that the number of bite marks carried by one individual depends on the behaviour of other individuals and that it may have a genetic basis. Thus, for a successful breeding strategy it could be crucial to consider both direct (DGE) and indirect (IGE) genetic effects on this trait. However, to date no study has investigated the genetic basis of bite marks in mink.

Result and discussion

A model that included DGE and IGE fitted the data significantly better than a model with DGE only, and IGE contributed a substantial proportion of the heritable variation available for response to selection. In the model with IGE, the total heritable variation expressed as the proportion of phenotypic variance (T2) was six times greater than classical heritability (h2). For instance, for total bite marks, T2 was equal to 0.61, while h2 was equal to 0.10. The genetic correlation between direct and indirect effects ranged from 0.55 for neck bite marks to 0.99 for tail bite marks. This positive correlation suggests that mink have a tendency to fight in a reciprocal way (giving and receiving bites) and thus, a genotype that confers a tendency to bite other individuals can also cause its bearer to receive more bites.

Conclusion

Both direct and indirect genetic effects contribute to variation in number of bite marks in group-housed mink. Thus, a genetic selection design that includes both direct genetic and indirect genetic effects could reduce the frequency of bite marks and probably aggression behaviour in group-housed mink.  相似文献   
38.
S W Alemu  P Berg  L Janss  P Bijma 《Heredity》2014,112(2):197-206
Social interactions among individuals are widespread, both in natural and domestic populations. As a result, trait values of individuals may be affected by genes in other individuals, a phenomenon known as indirect genetic effects (IGEs). IGEs can be estimated using linear mixed models. The traditional IGE model assumes that an individual interacts equally with all its partners, whether kin or strangers. There is abundant evidence, however, that individuals behave differently towards kin as compared with strangers, which agrees with predictions from kin-selection theory. With a mix of kin and strangers, therefore, IGEs estimated from a traditional model may be incorrect, and selection based on those estimates will be suboptimal. Here we investigate whether genetic parameters for IGEs are statistically identifiable in group-structured populations when IGEs differ between kin and strangers, and develop models to estimate such parameters. First, we extend the definition of total breeding value and total heritable variance to cases where IGEs depend on relatedness. Next, we show that the full set of genetic parameters is not identifiable when IGEs differ between kin and strangers. Subsequently, we present a reduced model that yields estimates of the total heritable effects on kin, on non-kin and on all social partners of an individual, as well as the total heritable variance for response to selection. Finally we discuss the consequences of analysing data in which IGEs depend on relatedness using a traditional IGE model, and investigate group structures that may allow estimation of the full set of genetic parameters when IGEs depend on kin.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号