首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   30篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   8篇
  2014年   5篇
  2013年   6篇
  2012年   6篇
  2011年   6篇
  2010年   6篇
  2009年   10篇
  2008年   4篇
  2007年   1篇
  2006年   4篇
  2005年   1篇
  2004年   5篇
  2003年   6篇
  2002年   6篇
  2001年   6篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1977年   2篇
排序方式: 共有135条查询结果,搜索用时 31 毫秒
121.
The edible fungus Pleurotus ostreatus (oyster mushroom) is an industrially produced heterothallic homobasidiomycete whose mating is controlled by a bifactorial tetrapolar genetic system. Two mating loci (matA and matB) control different steps of hyphal fusion, nuclear migration, and nuclear sorting during the onset and progress of the dikaryotic growth. Previous studies have shown that the segregation of the alleles present at the matB locus differs from that expected for a single locus because (i) new nonparental B alleles appeared in the progeny and (ii) there was a distortion in the segregation of the genomic regions close to this mating locus. In this study, we pursued these observations by using a genetic approach based on the identification of molecular markers linked to the matB locus that allowed us to dissect it into two genetically linked subunits (matBα and matBβ) and to correlate the presence of specific matBα and matA alleles with differences in monokaryotic growth rate. The availability of these molecular markers and the mating type dependence of growth rate in monokaryons can be helpful for marker-assisted selection of fast-growing monokaryons to be used in the construction of dikaryons able to colonize the substrate faster than the competitors responsible for reductions in the industrial yield of this fungus.  相似文献   
122.
Genetic Linkage Map of the Edible Basidiomycete Pleurotus ostreatus   总被引:3,自引:0,他引:3       下载免费PDF全文
We have constructed a genetic linkage map of the edible basidiomycete Pleurotus ostreatus (var. Florida). The map is based on the segregation of 178 random amplified polymorphic DNA and 23 restriction fragment length polymorphism markers; four hydrophobin, two laccase, and two manganese peroxidase genes; both mating type loci; one isozyme locus (est1); the rRNA gene sequence; and a repetitive DNA sequence in a population of 80 sibling monokaryons. The map identifies 11 linkage groups corresponding to the chromosomes of P. ostreatus, and it has a total length of 1,000.7 centimorgans (cM) with an average of 35.1 kbp/cM. The map shows a high correlation (0.76) between physical and genetic chromosome sizes. The number of crossovers observed per chromosome per individual cell is 0.89. This map covers nearly the whole genome of P. ostreatus.  相似文献   
123.
Pleurotus ostreatus is an industrially cultivated basidiomycete with nutritional and environmental applications. Its genome contains 35 Mbp organized in 11 chromosomes. There is currently available a genetic linkage map based predominantly on anonymous molecular markers complemented with the mapping of QTLs controlling growth rate and industrial productivity. To increase the saturation of the existing linkage maps, we have identified and mapped 82 genes expressed in the lamellae. Their manual annotation revealed that 34.1% of the lamellae-expressed and 71.5% of the lamellae-specific genes correspond to previously unknown sequences or to hypothetical proteins without a clearly established function. Furthermore, the expression pattern of some genes provides an experimental basis for studying gene regulation during the change from vegetative to reproductive growth. Finally, the identification of various differentially regulated genes involved in protein metabolism suggests the relevance of these processes in fruit body formation and maturation.  相似文献   
124.
125.
Mycelium growth rate is a quantitative characteristic that exhibits continuous variation. This trait has applied interest, as growth rate is correlated with production yield and increased advantage against competitors. In this work, we studied growth rate variation in the edible basidiomycete Pleurotus ostreatus growing as monokaryotic or dikaryotic mycelium on Eger medium or on wheat straw. Our analysis resulted in identification of several genomic regions (quantitative trait loci [QTLs]) involved in the control of growth rate that can be mapped on the genetic linkage map of this fungus. In some cases monokaryotic and dikaryotic QTLs clustered at the same map position, indicating that there are principal genomic areas responsible for growth rate control. The availability of this linkage map of growth rate QTLs can help in the design of rational strain breeding programs based on genomic information.  相似文献   
126.
Hydrophobins are fungal proteins that self-assemble spontaneously at hydrophilic-hydrophobic interfaces and change the polar nature of the surfaces to which they attach. This attribute can be used to introduce hydrophobic foci on the surface of hydrophilic supports where hydrophobins are attached by covalent binding. In this paper, we report the binding of Pleurotus ostreatus hydrophobins to a hydrophilic matrix (agarose) to construct a support for noncovalent immobilization and activation of lipases from Candida antarctica, Humicola lanuginosa, and Pseudomonas flourescens. Lipase immobilization on agarose-bound hydrophobins proceeded at very low ionic strength and resulted in increased lipase activity and stability. The enzyme could be desorbed from the support using moderate concentrations of Triton X-100, and its enantioselectivity was similar to that of lipases interfacially immobilized on conventional hydrophobic supports. These results suggest that lipase adsorption on hydrophobins follows an "interfacial activation" mechanism; immobilization on hydrophobins offers new possibilities for lipase study and modulation and reveals a new application for fungal hydrophobins.  相似文献   
127.
The preclinical model of bleomycin-induced lung fibrosis, used to investigate mechanisms related to idiopathic pulmonary fibrosis (IPF), has incorrectly predicted efficacy for several candidate compounds suggesting that it may be of limited value. As an attempt to improve the predictive nature of this model, integrative bioinformatic approaches were used to compare molecular alterations in the lungs of bleomycin-treated mice and patients with IPF. Using gene set enrichment analysis we show for the first time that genes differentially expressed during the fibrotic phase of the single challenge bleomycin model were significantly enriched in the expression profiles of IPF patients. The genes that contributed most to the enrichment were largely involved in mitosis, growth factor, and matrix signaling. Interestingly, these same mitotic processes were increased in the expression profiles of fibroblasts isolated from rapidly progressing, but not slowly progressing, IPF patients relative to control subjects. The data also indicated that TGFβ was not the sole mediator responsible for the changes observed in this model since the ALK-5 inhibitor SB525334 effectively attenuated some but not all of the fibrosis associated with this model. Although some would suggest that repetitive bleomycin injuries may more effectively model IPF-like changes, our data do not support this conclusion. Together, these data highlight that a single bleomycin instillation effectively replicates several of the specific pathogenic molecular changes associated with IPF, and may be best used as a model for patients with active disease.  相似文献   
128.
We propose an extension to quantile normalization that removes unwanted technical variation using control probes. We adapt our algorithm, functional normalization, to the Illumina 450k methylation array and address the open problem of normalizing methylation data with global epigenetic changes, such as human cancers. Using data sets from The Cancer Genome Atlas and a large case–control study, we show that our algorithm outperforms all existing normalization methods with respect to replication of results between experiments, and yields robust results even in the presence of batch effects. Functional normalization can be applied to any microarray platform, provided suitable control probes are available.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0503-2) contains supplementary material, which is available to authorized users.  相似文献   
129.

Background

Several founder mutations leading to increased risk of cancer among Ashkenazi Jewish individuals have been identified, and some estimates of the age of the mutations have been published. A variety of different methods have been used previously to estimate the age of the mutations. Here three datasets containing genotype information near known founder mutations are reanalyzed in order to compare three approaches for estimating the age of a mutation. The methods are: (a) the single marker method used by Risch et al., (1995); (b) the intra-allelic coalescent model known as DMLE, and (c) the Goldgar method proposed in Neuhausen et al. (1996), and modified slightly by our group. The three mutations analyzed were MSH2*1906 G->C, APC*I1307K, and BRCA2*6174delT.

Results

All methods depend on accurate estimates of inter-marker recombination rates. The modified Goldgar method allows for marker mutation as well as recombination, but requires prior estimates of the possible haplotypes carrying the mutation for each individual. It does not incorporate population growth rates. The DMLE method simultaneously estimates the haplotypes with the mutation age, and builds in the population growth rate. The single marker estimates, however, are more sensitive to the recombination rates and are unstable. Mutation age estimates based on DMLE are 16.8 generations for MSH2 (95% credible interval (13, 23)), 106 generations for I1037K (86-129), and 90 generations for 6174delT (71-114).

Conclusions

For recent founder mutations where marker mutations are unlikely to have occurred, both DMLE and the Goldgar method can give good results. Caution is necessary for older mutations, especially if the effective population size may have remained small for a long period of time.
  相似文献   
130.
DNA repair is essential to maintain genome integrity, and genes with roles in DNA repair are frequently mutated in a variety of human diseases. Repair via homologous recombination typically restores the original DNA sequence without introducing mutations, and a number of genes that are required for homologous recombination DNA double-strand break repair (HR-DSBR) have been identified. However, a systematic analysis of this important DNA repair pathway in mammalian cells has not been reported. Here, we describe a genome-scale endoribonuclease-prepared short interfering RNA (esiRNA) screen for genes involved in DNA double strand break repair. We report 61 genes that influenced the frequency of HR-DSBR and characterize in detail one of the genes that decreased the frequency of HR-DSBR. We show that the gene KIAA0415 encodes a putative helicase that interacts with SPG11 and SPG15, two proteins mutated in hereditary spastic paraplegia (HSP). We identify mutations in HSP patients, discovering KIAA0415/SPG48 as a novel HSP-associated gene, and show that a KIAA0415/SPG48 mutant cell line is more sensitive to DNA damaging drugs. We present the first genome-scale survey of HR-DSBR in mammalian cells providing a dataset that should accelerate the discovery of novel genes with roles in DNA repair and associated medical conditions. The discovery that proteins forming a novel protein complex are required for efficient HR-DSBR and are mutated in patients suffering from HSP suggests a link between HSP and DNA repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号