首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   33篇
  国内免费   1篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   13篇
  2014年   12篇
  2013年   15篇
  2012年   13篇
  2011年   14篇
  2010年   8篇
  2009年   12篇
  2008年   16篇
  2007年   22篇
  2006年   17篇
  2005年   22篇
  2004年   17篇
  2003年   18篇
  2002年   16篇
  2001年   4篇
  2000年   6篇
  1999年   9篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1978年   1篇
  1977年   2篇
  1973年   2篇
  1968年   2篇
  1967年   2篇
  1963年   1篇
排序方式: 共有304条查询结果,搜索用时 93 毫秒
91.
Autoreactive T cells represent a natural repertoire of T cells in both diseased patients and healthy individuals. The mechanisms regulating the function of these autoreactive T cells are still unknown. Ob1A12 is a myelin basic protein (MBP)-reactive Th cell clone derived from a patient with relapsing-remitting multiple sclerosis. Mice transgenic for this human TCR and DRA and DRB1*1501 chains develop spontaneous experimental autoimmune encephalomyelitis. The reactivity of Ob1A12 is reported to be restricted to recognition of MBP peptide 85-99 in the context of DRB1*1501. DRA/DRB1*1501 and the patient's other restriction element, DRA/DRB1*0401, differ significantly in their amino acid sequences. In this study we describe an altered peptide ligand derived from MBP(85-99) with a single amino acid substitution at position 88 (Val to Lys; 88V-->K), that could stimulate the Ob1A12.TCR in the context of both DRA/DRB1*1501 and DRA/DRB1*0401. Analysis of a panel of transfected T cell hybridomas expressing Ob1A12.TCR and CD4 indicated that Ob1A12.TCR cross-reactivity in the context of DRA/DRB1*0401 is critically dependent on the presence of the CD4 coreceptor. Furthermore, we found that activation of Ob1A12.TCR with MBP altered peptide ligand 85-99 88V-->K presented by DRB1*1501 or DRB1*0401 resulted in significant differences in TCR zeta phosphorylation. Our data indicate that injection of altered peptide ligand into patients heterozygous for MHC class II molecules may result in unexpected cross-reactivities, leading to activation of autoreactive T cells.  相似文献   
92.
Regulation of microtubule dynamics and organization in mitosis by a number of microtubule-associated proteins (MAPs) is required for proper bipolar spindle assembly, yet the precise mechanisms by which many MAPs function are poorly understood. One interesting class of MAPs is known to localize to the nucleus during interphase yet fulfill important spindle functions during mitosis. We have identified Xenopus nuclear factor 7 (Xnf7), a developmental regulator of dorsal-ventral patterning, as a microtubule-binding protein that also associates with the nuclear import receptor importin alpha/beta. Xnf7 localized to interphase nuclei and metaphase spindles both in Xenopus egg extracts and cultured cells. Xnf7-depleted spindles were hypersensitive to microtubule-depolymerizing agents. Functional characterization of Xnf7 revealed that it binds directly to microtubules, exhibits RING-finger-dependent E3-ubiquitin-ligase activity, and has C-terminal-dependent microtubule-bundling activity. The minimal microtubule-bundling domain of Xnf7 was sufficient to rescue the spindle-hypersensitivity phenotype. Thus, we have identified Xnf7 as a nuclear MAP whose microtubule-bundling activity, but not E3-ligase activity, contributes to microtubule organization and spindle integrity. Characterization of the multiple activities of Xnf7 may have implications for understanding human diseases caused by mutations in related proteins.  相似文献   
93.
Antigen-experienced T cells have been divided into CD62L+ CCR7+ central memory (TCM) and CD62L- CCR7- effector memory (TEM) cells. Here, we examined coexpression of CD62L and CCR7 in lymphocytic choriomeningitis virus-specific memory CD8 T cells from both lymphoid and nonlymphoid tissues. Three main points emerged: firstly, memory cells frequently expressed a mixed CD62L- CCR7+ phenotype that differed from the phenotypes of classical TEM and TCM cells; secondly, TCM cells were not restricted to lymphoid organs but were also present in significant numbers in nonlymphoid tissues; and thirdly, a major shift from a TCM to TEM phenotype was found in memory cells that had been stimulated repetitively with antigen.  相似文献   
94.
Homology Gene List (HOMGL) is a web-based tool for comparing gene lists with different accession numbers and identifiers and between different organisms. UniGene, LocusLink, HomoloGene and Ensembl databases are utilized to map between these lists and to retrieve upstream or transcribed sequences for genes in these lists. We illustrate the use of HOMGL with respect to microarray studies and promoter analysis. AVAILABILITY: http://homgl.biologie.hu-berlin.de/  相似文献   
95.
96.
97.
Entrainment, where oscillators synchronize to an external signal, is ubiquitous in nature. The transient time leading to entrainment plays a major role in many biological processes. Our goal is to unveil the specific dynamics that leads to fast entrainment. By studying a generic model, we characterize the transient time to entrainment and show how it is governed by two basic properties of an oscillator: the radial relaxation time and the phase velocity distribution around the limit cycle. Those two basic properties are inherent in every oscillator. This concept can be applied to many biological systems to predict the average transient time to entrainment or to infer properties of the underlying oscillator from the observed transients. We found that both a sinusoidal oscillator with fast radial relaxation and a spike-like oscillator with slow radial relaxation give rise to fast entrainment. As an example, we discuss the jet-lag experiments in the mammalian circadian pacemaker.  相似文献   
98.

Objective

Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, we tested how formaldehyde, at micromolar concentrations, interferes with general DNA damage recognition and excision processes that remove some of the most frequently inflicted DNA lesions.

Methodology/Principal Findings

The overall mobility of the DNA damage sensors UV-DDB (ultraviolet-damaged DNA-binding) and XPC (xeroderma pigmentosum group C) was analyzed by assessing real-time protein dynamics in the nucleus of cultured human cells exposed to non-cytotoxic (<100 μM) formaldehyde concentrations. The DNA lesion-specific recruitment of these damage sensors was tested by monitoring their accumulation at local irradiation spots. DNA repair activity was determined in host-cell reactivation assays and, more directly, by measuring the excision of DNA lesions from chromosomes. Taken together, these assays demonstrated that formaldehyde obstructs the rapid nuclear trafficking of DNA damage sensors and, consequently, slows down their relocation to DNA damage sites thus delaying the excision repair of target lesions. A concentration-dependent effect relationship established a threshold concentration of as low as 25 micromolar for the inhibition of DNA excision repair.

Conclusions/Significance

A main implication of the retarded repair activity is that low-dose formaldehyde may exert an adjuvant role in carcinogenesis by impeding the excision of multiple mutagenic base lesions. In view of this generally disruptive effect on DNA repair, we propose that formaldehyde exposures in the general population should be further decreased to help reducing cancer risks.  相似文献   
99.
High-content screening (HCS) is increasingly used in biomedical research generating multivariate, single-cell data sets. Before scoring a treatment, the complex data sets are processed (e.g., normalized, reduced to a lower dimensionality) to help extract valuable information. However, there has been no published comparison of the performance of these methods. This study comparatively evaluates unbiased approaches to reduce dimensionality as well as to summarize cell populations. To evaluate these different data-processing strategies, the prediction accuracies and the Z' factors of control compounds of a HCS cell cycle data set were monitored. As expected, dimension reduction led to a lower degree of discrimination between control samples. A high degree of classification accuracy was achieved when the cell population was summarized on well level using percentile values. As a conclusion, the generic data analysis pipeline described here enables a systematic review of alternative strategies to analyze multiparametric results from biological systems.  相似文献   
100.

Background

Meningothelial cells (MECs) are the cellular components of the meninges enveloping the brain. Although MECs are not fully understood, several functions of these cells have been described. The presence of desmosomes and tight junctions between MECs hints towards a barrier function protecting the brain. In addition, MECs perform endocytosis and, by the secretion of cytokines, are involved in immunological processes in the brain. However, little is known about the influence of pathological conditions on MEC function; e.g., during diseases associated with elevated intracranial pressure, hypoxia or increased oxidative stress.

Methods

We studied the effect of elevated pressure, hypoxia, and oxidative stress on immortalized human as well as primary porcine MECs. We used MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) bioreduction assays to assess the proliferation of MECs in response to treatment and compared to untreated control cells. To assess endocytotic activity, the uptake of fluorescently labeled latex beads was analyzed by fluorescence microscopy.

Results

We found that exposure of MECs to elevated pressure caused significant cellular proliferation and a dramatic decrease in endocytotic activity. In addition, mild oxidative stress severely inhibited endocytosis.

Conclusion

Elevated pressure and oxidative stress impact MEC physiology and might therefore influence the microenvironment of the subarachnoid space and thus the cerebrospinal fluid within this compartment with potential negative impact on neuronal function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号