首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   30篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2016年   5篇
  2015年   8篇
  2014年   7篇
  2013年   9篇
  2012年   12篇
  2011年   7篇
  2010年   5篇
  2009年   6篇
  2008年   3篇
  2007年   9篇
  2006年   5篇
  2005年   8篇
  2004年   11篇
  2003年   3篇
  2002年   9篇
  2001年   8篇
  2000年   4篇
  1999年   7篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   6篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   1篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
  1975年   2篇
  1972年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
181.
INTRODUCTION: Anatomic imaging alone is often inadequate for tuning systemic treatment for individual tumor response. Optically based techniques could potentially contribute to fast and objective response monitoring in personalized cancer therapy. In the present study, we evaluated the feasibility of dual-modality diffuse reflectance spectroscopy–autofluorescence spectroscopy (DRS-AFS) to monitor the effects of systemic treatment in a mouse model for hereditary breast cancer. METHODS: Brca1−/−; p53−/− mammary tumors were grown in 36 mice, half of which were treated with a single dose of cisplatin. Changes in the tumor physiology and morphology were measured for a period of 1 week using dual-modality DRS-AFS. Liver and muscle tissues were also measured to distinguish tumor-specific alterations from systemic changes. Model-based analyses were used to derive different optical parameters like the scattering and absorption coefficients, as well as sources of intrinsic fluorescence. Histopathologic analysis was performed for cross-validation with trends in optically based parameters. RESULTS: Treated tumors showed a significant decrease in Mie-scattering slope and Mie-to-total scattering fraction and an increase in both fat volume fraction and tissue oxygenation after 2 days of follow-up. Additionally, significant tumor-specific changes in the fluorescence spectra were seen. These longitudinal trends were consistent with changes observed in the histopathologic analysis, such as vital tumor content and formation of fibrosis. CONCLUSIONS: This study demonstrates that dual-modality DRS-AFS provides quantitative functional information that corresponds well with the degree of pathologic response. DRS-AFS, in conjunction with other imaging modalities, could be used to optimize systemic cancer treatment on the basis of early individual tumor response.  相似文献   
182.
Xeroderma pigmentosum (XP) is caused by defects in the nucleotide excision repair (NER) pathway. NER removes helix-distorting DNA lesions, such as UV–induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE) progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPFR153P) were compared to an XP–causing mutation (XPFR799W) in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPFR153P-YFP expressed in Xpf mutant cells. In addition, microinjection of XPFR153P-ERCC1 into the nucleus of XPF–deficient human cells restored nucleotide excision repair of UV–induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially regulate a cell''s capacity for DNA repair: by manipulating nuclear localization of XPF-ERCC1.  相似文献   
183.
The monitoring of different types of pollutants that are released into the environment and that present risks for both humans and wildlife has become increasingly important. In this study, we examined whether feathers of predatory birds can be used as a non-destructive biomonitor of organic pollutants. We demonstrate that polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and polybrominated diphenyl ethers (PBDEs) are measurable in one single tail feather of common buzzards (Buteo buteo) and that levels in this feather and internal tissues are significantly related to each other (0.35 < r < 0.76 for all 43 buzzards; 0.46 < r < 0.84 when excluding 17 starved birds). Our findings provide the first indication that feathers of predatory birds could be useful in non-destructive biomonitoring of organic pollutants, although further validation may be necessary.  相似文献   
184.
Kesic MJ  Meyer M  Bauer R  Jaspers I 《PloS one》2012,7(4):e35108
Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility.  相似文献   
185.
186.
Genetic evidence suggests that the Ku DNA-end-binding protein complex is central to the recombination-based repair of double-strand breaks that protects DNA from radiation and underlies antibody gene rearrangement.  相似文献   
187.
Many sugars, when added to the medium of bacteria or yeast cells, are recovered inside the cell partly as the sugar-6-phosphate and partly as the free sugar. Phosphorylation may have occurred intracellularly subsequent to transmembrane transport of the free sugar, or during transport, intimately coupled to the translocation step itself. When using nonmetabolizable sugars, isotope pulse-labeling experiments can be used to discriminate between these two possibilities. In previous papers these pulse-labeling procedures have been discussed and interpreted only on a qualitative basis. Due to experimental or systematic errors—such as adsorption of labeled substrate on the filters used to separate cells and medium—the interpretation is not always unambiguous. Under these circumstances a more detailed quantitative analysis of the kinetics of pulse-labeling could provide a warrant for the reliability of the interpretation.With non-metabolizable sugars a stationary state will usually develop, characterized by a dynamic equilibrium between the free sugar and the sugar-phosphate. In the present paper the kinetics of pulse-labeling during this stationary state are derived.  相似文献   
188.
Seven dermorphin hepta- and tetrapeptide analogues containing [3,4] amide bond replacement by a carbon-carbon double and single bond were prepared. 1H NMR studies of the pseudoheptapeptide in DMSO indicate the presence of extended conformations with stacking of the side chains in the N-terminal part and an inverse gamma-turn around Ser7 in the conformational equilibrium. The binding data show that the affinity of the analogues for the mu-receptor is only slightly diminished in the D-Ala2 series and is more affected in the D-Arg2 series. Since the Gly4NH is not present in these compounds we conclude that this NH is not required to stabilize the bioactive conformation nor is it directly involved in binding to the receptor.  相似文献   
189.
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号