首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   20篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   4篇
  2019年   10篇
  2018年   18篇
  2017年   12篇
  2016年   11篇
  2015年   16篇
  2014年   24篇
  2013年   23篇
  2012年   28篇
  2011年   32篇
  2010年   14篇
  2009年   15篇
  2008年   9篇
  2007年   18篇
  2006年   16篇
  2005年   13篇
  2004年   14篇
  2003年   10篇
  2002年   6篇
  2001年   1篇
  2000年   4篇
  1999年   11篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1957年   1篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
161.
Jorge AM  Hoiczyk E  Gomes JP  Pinho MG 《PloS one》2011,6(11):e27542
EzrA is a negative regulator of FtsZ in Bacillus subtilis, involved in the coordination between cell growth and cell division and in the control of the cell elongation-division cycle. We have now studied the role of the Staphylococcus aureus homologue of the B. subtilis EzrA protein and shown that it is not essential for cell viability. EzrA conditional and null mutants have an overall increase of the average cell size, compared to wild type strains. In the larger ezrA mutant S. aureus cells, cell division protein FtsZ and the cell wall synthesizing Penicillin Binding Proteins (PBPs) are not properly localized. This suggests that there may be a maximum cell diameter that allows formation of a Z-ring capable of recruiting the other components of the divisome and of driving cytokinesis. We propose that the major role of EzrA in S. aureus is in cell size homeostasis.  相似文献   
162.
CD25(High) CD4+ regulatory T cells (Treg cells) have been described as key players in immune regulation, preventing infection-induced immune pathology and limiting collateral tissue damage caused by vigorous anti-parasite immune response. In this review, we summarize data obtained by the investigation of Treg cells in different clinical forms of Chagas' disease. Ex vivo immunophenotyping of whole blood, as well as after stimulation with Trypanosoma cruzi antigens, demonstrated that individuals in the indeterminate (IND) clinical form of the disease have a higher frequency of Treg cells, suggesting that an expansion of those cells could be beneficial, possibly by limiting strong cytotoxic activity and tissue damage. Additional analysis demonstrated an activated status of Treg cells based on low expression of CD62L and high expression of CD40L, CD69, and CD54 by cells from all chagasic patients after T. cruzi antigenic stimulation. Moreover, there was an increase in the frequency of the population of Foxp3+ CD25(High)CD4+ cells that was also IL-10+ in the IND group, whereas in the cardiac (CARD) group, there was an increase in the percentage of Foxp3+ CD25(High) CD4+ cells that expressed CTLA-4. These data suggest that IL-10 produced by Treg cells is effective in controlling disease development in IND patients. However, in CARD patients, the same regulatory mechanism, mediated by IL-10 and CTLA-4 expression is unlikely to be sufficient to control the progression of the disease. These data suggest that Treg cells may play an important role in controlling the immune response in Chagas' disease and the balance between regulatory and effector T cells may be important for the progression and development of the disease. Additional detailed analysis of the mechanisms on how these cells are activated and exert their function will certainly give insights for the rational design of procedure to achieve the appropriate balance between protection and pathology during parasite infections.  相似文献   
163.
In this paper we study a model of gene networks introduced by Andreas Wagner in the 1990s that has been used extensively to study the evolution of mutational robustness. We investigate a range of model features and parameters and evaluate the extent to which they influence the probability that a random gene network will produce a fixed point steady state expression pattern. There are many different types of models used in the literature, (discrete/continuous, sparse/dense, small/large network) and we attempt to put some order into this diversity, motivated by the fact that many properties are qualitatively the same in all the models. Our main result is that random networks in all models give rise to cyclic behavior more often than fixed points. And although periodic orbits seem to dominate network dynamics, they are usually considered unstable and not allowed to survive in previous evolutionary studies. Defining stability as the probability of fixed points, we show that the stability distribution of these networks is highly robust to changes in its parameters. We also find sparser networks to be more stable, which may help to explain why they seem to be favored by evolution. We have unified several disconnected previous studies of this class of models under the framework of stability, in a way that had not been systematically explored before.  相似文献   
164.
Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a “flip-flop” phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.  相似文献   
165.
166.

Background

Fatalities resulting from paraquat (PQ) self-poisonings represent a major burden of this herbicide. Specific therapeutic approaches have been followed to interrupt its toxic pathway, namely decontamination measures to prevent PQ absorption and to increase its excretion from organism, as well as the administration of anti-inflammatory and immunosuppressive drugs. Until now, none of the postmortem studies resulting from human PQ poisonings have assessed the relationship of these therapeutic measures with PQ toxicokinetics and related histopathological lesions, these being the aims of the present study.

Methodology/Principal Findings

For that purpose, during 2008, we collected human fluids and tissues from five forensic autopsies following fatal PQ poisonings. PQ levels were measured by gas chromatography-ion trap mass spectrometry. Structural inflammatory lesions were evaluated by histological and immunohistochemistry analysis. The samples of cardiac blood, urine, gastric and duodenal wall, liver, lung, kidney, heart and diaphragm, showed quantifiable levels of PQ even at 6 days post-intoxication. Structural analysis showed diffused necrotic areas, intense macrophage activation and leukocyte infiltration in all analyzed tissues. By immunohistochemistry it was possible to observe a strong nuclear factor kappa-B (NF-κB) activation and excessive collagen deposition.

Conclusions/Significance

Considering the observed PQ levels in all analyzed tissues and the expressive inflammatory reaction that ultimately leads to fibrosis, we conclude that the therapeutic protocol usually performed needs to be reviewed, in order to increase the efficacy of PQ elimination from the body as well as to diminish the inflammatory process.  相似文献   
167.

Background  

Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed.  相似文献   
168.
Cationic liposomes can be designed and developed in order to be an efficient gene delivery system for mammalian cells. Dendritic cell (DC) vaccines can be used to treat cancer, as cationic liposomes can deliver tumor antigens to cells while cells remain active. However, most methods used for liposome production are not able to reproduce in large scale the physicochemical and biological properties of liposomes produced in laboratory scale. In this context, ethanol injection method achieved promising results, although requiring post-treatment for size reduction and/or to remove residual ethanol. Thus, the purpose of this study was to generate cationic liposomes suitable for gene therapies via ethanol injection method in only one step (VEI) and compared to those submitted to a size reduction processes by microfluidization (MFV). For this, the method to produce cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoylphosphatidylethanolamine (DOPE) was optimized using a statistical design approach. As a result, the size of VEI decreased from 290?nm to 110?nm and the polydispersity from 0.54 to 0.17. In the case of MFV, size decreased from 128?nm to 107?nm and polydispersity from 0.40 to 0.18. ST and MFV before and after optimization were also characterized in terms of morphology by transmission electron microscopy (TEM) and structure by differential scanning calorimetry (DSC). Finally, to show their potential in gene/immune therapies applications, DCs were stimulated by such liposomes. Cells internalized liposomes, increasing expression of the costimulatory molecule CD86 and inducing T lymphocyte proliferation.  相似文献   
169.
The aim of this study was to perform genome-wide selection using a set of Dart-seq markers associated to the additive-dominant genomic best linear unbiased prediction (GBLUP) model to predict maize grain yield in different crop seasons and locations. Genotyping was performed with Dart-seq markers from 447 lines coming from a germplasm bank of a private maize breeding company. Crossing these lines provided 838 single-cross hybrids evaluated in six locations in the winter crop season of 2013 and 797 single-cross hybrids evaluated in four locations in the summer crop season of 2013/2014. Four k-fold levels were applied on the full panel of 23,153 Dart genotyping-by-sequencing markers and samples of 50% of the available markers. The different crop seasons were used as training and validation populations to estimate the predictive accuracy. The magnitude of the correlations between predicted and observed hybrids ranged from 0.82 to 0.89 in the winter crop season and from 0.56 to 0.76 in the summer crop season. The correlations between combinations tested in different crop seasons and locations were encouraging (0.53). Predictive ability was highly influenced by the genetic background and also by the interaction between crop seasons. The coincidences between the genomic values of the summer crop and winter crop, in terms of discard, were 89 and 90%. This result shows the possibility of using genomic prediction in breeding programs for initial discard of low-yielding genotypes. The GBLUP method was able to generate high correlations between predicted and observed hybrids, even at high levels of missing in k-fold and in different locations and crop seasons.  相似文献   
170.
Aims Community assembly persists as a key topic in ecology due to the complex variation in the relative importance of assembly forces and mechanisms across spatio-temporal scales and ecosystems. Here we address a forest–savanna vegetation mosaic in the Brazilian Atlantic forest to examine the role played by soil attributes as determinants of community assembly and organization at a landscape spatial scale.Methods We examined soil and plant assemblage attributes across 23 plots of forest and savanna in a 1600 km 2 landscape exposed to the same climatic conditions in the Atlantic forest region of northeast Brazil. Assemblage attributes included species richness, taxonomic and functional composition (community weighted mean, CWM) and functional diversity (quadratic diversity; Rao's quadratic entropy index) relative to plant leaf area, specific leaf area, leaf dry matter content, thickness and succulence.Important findings Our results suggest that forest and savanna patches exposed to the same climatic conditions clearly differ in terms of soil attributes, plant assemblage structure, taxonomic and functional composition. By selecting particular plant strategies relative to resource economy, soil potentially affects community structure, with forest assemblages bearing more acquisitive resource-use strategies, while conservative plant strategies are more frequent in savannas. Accordingly, savanna–forest mosaics in the Atlantic forest region represent spatially organized plant assemblages in terms of taxonomic and functional features, with a signal of trait convergence in both vegetation types. Soil-mediated filtering thus emerges as a potential deterministic assembly force affecting the spatial organization of savanna–forest boundaries and mosaics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号