首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3284篇
  免费   261篇
  国内免费   363篇
  2024年   10篇
  2023年   64篇
  2022年   148篇
  2021年   197篇
  2020年   143篇
  2019年   158篇
  2018年   184篇
  2017年   115篇
  2016年   154篇
  2015年   220篇
  2014年   250篇
  2013年   250篇
  2012年   302篇
  2011年   275篇
  2010年   179篇
  2009年   140篇
  2008年   187篇
  2007年   169篇
  2006年   133篇
  2005年   92篇
  2004年   95篇
  2003年   60篇
  2002年   77篇
  2001年   45篇
  2000年   32篇
  1999年   42篇
  1998年   35篇
  1997年   32篇
  1996年   17篇
  1995年   16篇
  1994年   15篇
  1993年   14篇
  1992年   18篇
  1991年   6篇
  1990年   5篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1980年   1篇
排序方式: 共有3908条查询结果,搜索用时 15 毫秒
71.
The epidermal growth factor receptor (EGFR) signaling pathway regulates cell proliferation, differentiation, and survival, and is frequently dysregulated in esophageal and gastric cancers. Few studies have comprehensively examined the association between germline genetic variants in the EGFR pathway and risk of esophageal and gastric cancers. Based on a genome-wide association study in a Han Chinese population, we examined 3443 SNPs in 127 genes in the EGFR pathway for 1942 esophageal squamous cell carcinomas (ESCCs), 1758 gastric cancers (GCs), and 2111 controls. SNP-level analyses were conducted using logistic regression models. We applied the resampling-based adaptive rank truncated product approach to determine the gene- and pathway-level associations. The EGFR pathway was significantly associated with GC risk (P = 2.16×10−3). Gene-level analyses found 10 genes to be associated with GC, including FYN, MAPK8, MAP2K4, GNAI3, MAP2K1, TLN1, PRLR, PLCG2, RPS6KB2, and PIK3R3 (P<0.05). For ESCC, we did not observe a significant pathway-level association (P = 0.72), but gene-level analyses suggested associations between GNAI3, CHRNE, PAK4, WASL, and ITCH, and ESCC (P<0.05). Our data suggest an association between specific genes in the EGFR signaling pathway and risk of GC and ESCC. Further studies are warranted to validate these associations and to investigate underlying mechanisms.  相似文献   
72.
73.

Background

To develop a method for systematic classification of gallbladder stones, analyze the clinical characteristics of each type of stone and provide a theoretical basis for the study of the formation mechanism of different types of gallbladder stones.

Methodology

A total of 807 consecutive patients with gallbladder stones were enrolled and their gallstones were studied. The material composition of gallbladder stones was analyzed using Fourier Transform Infrared spectroscopy and the distribution and microstructure of material components was observed with Scanning Electron Microscopy. The composition and distribution of elements were analyzed by an X-ray energy spectrometer. Gallbladder stones were classified accordingly, and then, gender, age, medical history and BMI of patients with each type of stone were analyzed.

Principal Findings

Gallbladder stones were classified into 8 types and more than ten subtypes, including cholesterol stones (297), pigment stones (217), calcium carbonate stones (139), phosphate stones (12), calcium stearate stones (9), protein stones (3), cystine stones (1) and mixed stones (129). Mixed stones were those stones with two or more than two kinds of material components and the content of each component was similar. A total of 11 subtypes of mixed stones were found in this study. Patients with cholesterol stones were mainly female between the ages of 30 and 50, with higher BMI and shorter medical history than patients with pigment stones (P<0.05), however, patients with pigment, calcium carbonate, phosphate stones were mainly male between the ages of 40 and 60.

Conclusion

The systematic classification of gallbladder stones indicates that different types of stones have different characteristics in terms of the microstructure, elemental composition and distribution, providing an important basis for the mechanistic study of gallbladder stones.  相似文献   
74.
75.
Ju  Wen  Sun  Tiantian  Lu  Wenyi  Smith  Alhaji Osman  Bao  Yurong  Adzraku  Seyram Yao  Qi  Kunming  Xu  Kailin  Qiao  Jianlin  Zeng  Lingyu 《Molecular biology reports》2020,47(4):2735-2748
Molecular Biology Reports - Murine bone marrow-derived macrophages (M0) and M1- and M2-polarized macrophages are being widely used as a laboratory model for polarized macrophages related molecular...  相似文献   
76.
Recently, the use of hybrid double network (DN) hydrogels has become prominent due to their enhanced mechanical properties, which has opened the door for new applications of these soft materials. Only a few of these gels have demonstrated both injectable and moldable capabilities. In this work, we report the mechanical properties, gauge factor (GF) values and demonstrate both the injectability and moldability of a gelatin/polyacrylamide DN hydrogel. We optimized several parameters, such as, gelatin to polyacrylamide ratio, reactant concentrations and metal ion concentration, to produce a gelatin/polyacrylamide hydrogel with superior mechanical properties. The highest water content gel was capable of withstanding strains of 5000% before failure. These gels were facilely injected into molds where they effectively changed shape and maintained similar properties prior to remolding. When 20 mM calcium was doped into a similar gel, a tensile strength of 1.71 MPa was achieved. Aside from improving the mechanical properties of the gels, both Ca2+ and Mg2+ also improved their conductivity, so they were tested for use as strain sensors. The sensitivity of the hydrogel strain sensors were measured using the GF. For the 20 mM Ca2+ hydrogel, these GF values ranged from 1.63 to 6.85 for strains of 100% to 2100% respectively. Additionally, the sensors showed good stability over continuous cyclic stretching, demonstrating their long term reliability for strain sensing.  相似文献   
77.
78.
Atherosclerosis (AS), a chronic disorder of large arteries, is the underlying pathological process of heart disease and stroke. Former researchers have found that microRNAs (miRs) are involved in the several key processes of AS. Apolipoprotein E knockout (ApoE−/−) mice fed a high-fat-diet (HFD) to establish AS model. The expression of miR-103 was characterized in the mice model. The effects of miR-103 on inflammation and endoplasmic reticulum stress (ERS) were analyzed when the expression of miR-103 was inhibited in ApoE −/− mice fed an HFD and human aortic endothelial cells (HAECs) exposed to oxidized low-density lipoprotein (ox-LDL). The relationship between miR-103 and phosphatase and tensin homolog (PTEN) was identified by luciferase activity detection and real-time quantitative polymerase chain reaction (RT-qPCR). Gain- and loss-function approaches were further applied for investigating the regulatory effects of miR-103 and PTEN on ERS. Role of MAPK signaling was then analyzed using PD98059 to block this pathway. miR-103 was highly expressed in the ApoEApoE −/− mice fed an HFD. Downregulation of miR-103 suppressed inflammation and ERS in endothelial cells isolated from ApoE −/− mice fed a HFD and ox-LDL-exposed HAECs. In addition, miR-103 can target PTEN and downregulate its expression. Overexpression of PTEN reversed the miR-103-induced activation of MAPK signaling. Moreover, PTEN upregulation or MAPK signaling inhibition ease miR-103-induced inflammation and ERS in vivo and in vitro. Thus, miR-103 depletion restrains the progression of AS through blocking PTEN-mediated MAPK signaling.  相似文献   
79.
Starting in 1991, the advance of Tyr-recombinases Flp and Cre enabled superior strategies for the predictable insertion of transgenes into compatible target sites of mammalian cells. Early approaches suffered from the reversibility of integration routes and the fact that co-introduction of prokaryotic vector parts triggered uncontrolled heterochromatization. Shortcomings of this kind were overcome when Flp-Recombinase Mediated Cassette Exchange entered the field in 1994. RMCE enables enhanced tag-and-exchange strategies by precisely replacing a genomic target cassette by a compatible donor construct. After “gene swapping” the donor cassette is safely locked in, but can nevertheless be re-mobilized in case other compatible donor cassettes are provided (“serial RMCE”). These features considerably expand the options for systematic, stepwise genome modifications. The first decade was dominated by the systematic generation of cell lines for biotechnological purposes. Based on the reproducible expression capacity of the resulting strains, a comprehensive toolbox emerged to serve a multitude of purposes, which constitute the first part of this review. The concept per se did not, however, provide access to high-producer strains able to outcompete industrial multiple-copy cell lines. This fact gave rise to systematic improvements, among these certain accumulative site-specific integration pathways. The exceptional value of RMCE emerged after its entry into the stem cell field, where it started to contribute to the generation of induced pluripotent stem (iPS-) cells and their subsequent differentiation yielding a variety of cell types for diagnostic and therapeutic purposes. This topic firmly relies on the strategies developed in the first decade and can be seen as the major ambition of the present article. In this context an unanticipated, potent property of serial Flp-RMCE setups concerns the potential to re-open loci that have served to establish the iPS status before the site underwent the obligatory silencing process. Other relevant options relate to the introduction of composite Flp-recognition target sites (“heterospecific FRT-doublets”), into the LTRs of lentiviral vectors. These “twin sites” enhance the safety of iPS re-programming and -differentiation as they enable the subsequent quantitative excision of a transgene, leaving behind a single “FRT-twin”. Such a strategy combines the established expression potential of the common retro- and lentiviral systems with options to terminate the process at will. The remaining genomic tag serves to identify and characterize the insertion site with the goal to identify genomic “safe harbors” (GOIs) for re-use. This is enabled by the capacity of “FRT-twins” to accommodate any incoming RMCE-donor cassette with a compatible design.  相似文献   
80.
Congenital human cytomegalovirus (HCMV) infection is the most frequent infectious cause of birth defects, primarily neurological disorders. Neural progenitor/stem cells (NPCs) are the major cell type in the subventricular zone and are susceptible to HCMV infection. In culture, the differentiation status of NPCs may change with passage, which in turn may alter susceptibility to virus infection. Previously, only early-passage (i.e., prior to passage 9) NPCs were studied and shown to be permissive to HCMV infection. In this study, NPC cultures derived at different gestational ages were evaluated after short (passages 3 to 6) and extended (passages 11 to 20) in vitro passages for biological and virological parameters (i.e., cell morphology, expression of NPC markers and HCMV receptors, viral entry efficiency, viral gene expression, virus-induced cytopathic effect, and release of infectious progeny). These parameters were not significantly influenced by the gestational age of the source tissues. However, extended-passage cultures showed evidence of initiation of differentiation, increased viral entry, and more efficient production of infectious progeny. These results confirm that NPCs are fully permissive for HCMV infection and that extended-passage NPCs initiate differentiation and are more permissive for HCMV infection. Later-passage NPCs being differentiated and more permissive for HCMV infection suggest that HCMV infection in fetal brain may cause more neural cell loss and give rise to severe neurological disabilities with advancing brain development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号