首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14452篇
  免费   1563篇
  国内免费   2060篇
  18075篇
  2025年   2篇
  2024年   209篇
  2023年   294篇
  2022年   657篇
  2021年   940篇
  2020年   747篇
  2019年   846篇
  2018年   713篇
  2017年   566篇
  2016年   725篇
  2015年   1042篇
  2014年   1272篇
  2013年   1263篇
  2012年   1560篇
  2011年   1488篇
  2010年   894篇
  2009年   756篇
  2008年   833篇
  2007年   699篇
  2006年   571篇
  2005年   432篇
  2004年   318篇
  2003年   284篇
  2002年   205篇
  2001年   94篇
  2000年   100篇
  1999年   103篇
  1998年   77篇
  1997年   60篇
  1996年   53篇
  1995年   43篇
  1994年   39篇
  1993年   25篇
  1992年   31篇
  1991年   33篇
  1990年   22篇
  1989年   16篇
  1988年   12篇
  1987年   6篇
  1986年   3篇
  1985年   19篇
  1984年   5篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1978年   2篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
  1938年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Gu M  Dong X  Shi L  Shi L  Lin K  Huang X  Chu J 《Gene》2012,496(1):37-44
We performed a mitochondrial whole-genome comparison study in 40 Tibetan and 50 Han Chinese. All subjects could be classified into 13 haplogroups pertained to the Macrohaplogroup M and N that pitched different quadrants by principal component analysis. We observed a difference in the M9 haplogroup and identified 18 significant variants by comparing whole sequences between Tibetan and Han populations. Variants in ND2, COX2, tRNA alanine and 12S rRNA were predicted to confer increased protein stability in Tibetans. We compared the base substitutions of nonsynonymous (NS) versus synonymous (S) of 13 protein-encoding genes and found the NS/S values of the ATP6, ATP8, and Cyt b genes were larger (>1) in Tibetans than that in Han population. Our findings provide clues for the existence of adaptive selection for the ATP6, ATP8, Cyt b, ND2, COX2, tRNA alanine and 12S rRNA genes in Tibetans which likely contributed to adaptation to their specific geographic environment, such as high altitude.  相似文献   
92.
Li SJ  Bai JJ  Cai L  Ma DM  Du FF 《Mitochondrial DNA》2012,23(2):92-99
The largemouth bass belongs to the family Centrarchidae, which includes two subspecies: the northern subspecies, Micropterus salmoides salmoides, and the Florida subspecies, Micropterus salmoides floridanus. In this study, the complete mitochondrial genomes of the two subspecies were sequenced, and their genetic differences were identified. The mitogenomes of M. s. salmoides and M. s. floridanus are 16,486 and 16,479?bp in length, respectively. The two subspecies consisted of 37 genes (13 protein-coding genes, 2 ribosomal RNA, and 22 transfer RNA), which are typical for vertebrate mtDNA. Phylogenetic analysis provided statistical support for the monophyly of the family Centrarchidae. Comparison of the two subspecies' mitogenomes revealed a relatively high number (450) of single nucleotide polymorphisms (SNPs) in protein-coding genes. We characterized SNPs in the partial cytochrome c oxidase subunit 1 gene of different individuals from three cultured populations, one wild northern subspecies population, and one wild Florida subspecies population. Twenty-eight SNPs were fixed with alternative nucleotides in the two subspecies, which could be used for differentiating them. Based on this gene, phylogenetic tree and genetic distance analyses supported that cultured largemouth bass in China belongs to the northern subspecies.  相似文献   
93.
It has been reported that aluminum (Al) toxicity is a major limiting factor for plant growth and production on acidic soils. Boron (B) is indispensable micronutrient for normal growth of higher plants, and its addition could alleviate Al toxicity. The rape seedlings were grown under three B (0.25, 25 and 500 μM) and two Al concentrations [0 (?Al) and 100 μM (+Al) as AlCl3·6H2O]. The results indicated that Al stress severely hampered root elongation and root activity at 0.25 μM B while the normal (25 μM) and excess (500 μM) B improved the biomass of rape seedlings under Al exposure. Additionally, normal and excess B treatment reduced accumulation of Al in the roots and leaves under Al toxicity, which was also confirmed by hematoxylin with light staining. This indicates that both normal and excess B could alleviate Al toxicity. Furthermore, it also decreased the contents of malondialdehyde and soluble protein under Al toxicity. Likewise, superoxide dismutase activity (SOD) improved by 97.82 and 131.96% in the roots, and 168 and 119.88% in the leaves at 25 and 500 µM B, respectively, while the peroxidase and catalase activities dropped as a result of Al stress. The study results demonstrated that appropriate B application is necessary to avoid the harmful consequences of Al toxicity in rape seedlings.  相似文献   
94.
95.
96.
Costaria costata is a commercially and industrially important brown alga. In this study, we used next-generation sequencing to determine the complete plastid genome of C. costata. The genome consists of a 129,947 bp circular DNA molecule with an A+T content of 69.13% encoding a standard set of six ribosomal RNA genes, 27 transfer RNA genes, and 137 protein-coding genes with two conserved open reading frames (ORFs). The overall genome structure of C. costata is nearly the same as those of Saccharina japonica and Undaria pinnatifida. The plastid genomes of these three algal species retain a strong conservation of the GTG start codon while infrequently using TGA as a stop codon. In this regard, they differ substantially from the plastid genomes of Ectocarpus siliculosus and Fucus vesiculosus. Analysis of the nucleic acid substitution rates of the Laminariales plastid genes revealed that the petF gene has the highest substitution rate and the petN gene contains no substitution over its complete length. The variation in plastid genes between C. costata and S. japonica is lower than that between C. costata and U. pinnatifida as well as that between U. pinnatifida and S. japonica. Phylogenetic analyses demonstrated that C. costata and U. pinnatifida have a closer genetic relationship. We also identified two gene length mutations caused by the insertion or deletion of repeated sequences, which suggest a mechanism of gene length mutation that may be one of the key explanations for the genetic variation in plastid genomes.  相似文献   
97.
98.
Neuroblastoma accounts for 15% of childhood cancer deaths and presents with metastatic disease of the bone and the bone marrow at diagnosis in 70% of the cases. Previous studies have shown that the Mesenchymal Stromal Cell (MSC) secretome, triggers metastases in several cancer types such as breast and prostate cancer, but the specific role of the MSC factors in neuroblastoma metastasis is unclear. To better understand the effect of MSC secretome on chemokine receptors in neuroblastoma, and its role in metastasis, we studied a panel of 20 neuroblastoma cell lines, and compared their invasive potential towards MSC-conditioned-RPMI (mRPMI) and their cytokine receptor expression profiles. Western blot analysis revealed the expression of multiple CXCR4 isoforms in neuroblastoma cells. Among the five major isoforms, the expression of the 47 kDa isoform showed significant correlation with high invasiveness. Pretreatment with mRPMI up-regulated the expression of the 47 kDa CXCR4 isoform and also increased MMP-9 secretion, expression of integrin α3 and integrin β1, and the invasive potential of the cell; while blocking CXCR4 either with AMD 3100, a CXCR4 antagonist, or with an anti-47 kDa CXCR4 neutralizing antibody decreased the secretion of MMP-9, the expression of integrin α3 and integrin β1, and the invasive potential of the cell. Pretreatment with mRPMI also protected the 47 kDa CXCR4 isoform from ubiquitination and subsequent degradation. Our data suggest a modulatory role of the MSC secretome on the expression of the 47 kDa CXCR4 isoform and invasion potential of the neuroblastoma cells to the bone marrow.  相似文献   
99.
Brucella, which is regarded as an intracellular pathogen responsible for a zoonotic disease called brucellosis, survives and proliferates within several types of phagocytic and non-phagocytic cells. Brucella infects not only their preferred hosts but also other domestic and wild animal species, inducing abortion and infertility. Therefore, the interaction between uterine cells and Brucella is important for understanding the pathogenesis of this disease. In this study, we describe the Brucella suis vaccine strain S2 (B.suis.S2) infection and replication in the immortalized caprine endometrial epithelial cell line hTERT-EECs and the induced cellular and molecular response modulation in vitro. We found that B.suis S2 was able to infect and replicate to high titers and inhibit the proliferation of EECs and induce non-apoptotic pathways, as determined by B.suis.S2 detection using MTT and acridine orange/ethidium bromide (AO/EB) staining and flow cytometry. We explored the evidence of non-apoptotic pathways using real-time quantitative RT-PCR and by western blot analysis. Finally, we discovered the over-expression of GRP78, ATF4, ATF6, PERK, eIF2α, CHOP, and cytochrome c (Cyt-c) but not IRE1, xbp-1, and caspase-3 in B.suis.S2 (HK)-attacked and B.suis.S2-infected cells, suggesting that the molecular mechanism of ER stress sensor activation by B.suis.S2 is basically concomitant with that by B.suis.S2 (HK) and that ER stress, especially the PERK pathway, plays an important role in the process of B.suis.S2 infecting EEC, which may, in part, explain the role of the uterus in the pathogenesis of B.suis.S2.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-014-0564-x) contains supplementary material, which is available to authorized users.  相似文献   
100.
Glioblastoma (GBM) is the most aggressive cerebral gliomas. Moreover, the overall prognosis of GBM is still little. Baicalein (BA) is a flavonoid derived from the Scutellaria baicalensis root, and has historically been used in anticancer therapies. However, its apoptosis role and related mechanisms in GBM has not yet been researched clearly. Thus, this study aimed to investigate the effects of BA on human GBM U251 cell line. The effects of BA on proliferation of U251 cells were measured by Cell Counting Kit-8 assay. Cellular apoptosis was detected by flow cytometry with annexin V-FITC/propidium iodide staining. The expression of apoptosis-related protein Bcl-2, Bax and cleaved-caspase3 was detected by quantitative real-time PCR and western blot. The expression of nuclear p65 protein, the active subunit of nuclear factor-kappa B (NF-κB), was determined by immunofluorescence and western blot. Our results showed that the viability of U251 cells significantly decreased in a time- and dose-dependent manner after treated with BA, and the apoptotic ratio of BA-treated groups was significantly higher than that of control groups. Furthermore, the expression of NF-kB-p65 in the nucleus was remarkably reduced, and the activity of NF-kB-p65 was remarkably inhibited after BA treatment. Combined treatment with a NF-kB-P65 inhibitor (QNZ) and BA resulted in the synergistic reduction of Bcl-2 expression and then increase of Bax and cleaved-caspase3 expression; and the viability of U251 cells was also inhibited. In conclusion, BA inhibits GBM cells viability and induces apoptosis via inhibit the activity of NF-kB-p65, suggesting that BA is a potential therapeutic agent for GBM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号