首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48212篇
  免费   3900篇
  国内免费   5098篇
  2024年   94篇
  2023年   520篇
  2022年   1300篇
  2021年   2487篇
  2020年   1648篇
  2019年   2109篇
  2018年   2091篇
  2017年   1462篇
  2016年   2027篇
  2015年   2970篇
  2014年   3522篇
  2013年   3750篇
  2012年   4458篇
  2011年   4070篇
  2010年   2586篇
  2009年   2158篇
  2008年   2628篇
  2007年   2334篇
  2006年   2167篇
  2005年   1814篇
  2004年   1602篇
  2003年   1452篇
  2002年   1208篇
  2001年   927篇
  2000年   801篇
  1999年   853篇
  1998年   480篇
  1997年   465篇
  1996年   429篇
  1995年   373篇
  1994年   389篇
  1993年   296篇
  1992年   349篇
  1991年   273篇
  1990年   234篇
  1989年   209篇
  1988年   139篇
  1987年   112篇
  1986年   104篇
  1985年   100篇
  1984年   67篇
  1983年   59篇
  1982年   38篇
  1981年   10篇
  1980年   10篇
  1979年   12篇
  1978年   5篇
  1970年   2篇
  1968年   2篇
  1965年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
901.
Nutrient metabolism is crucial for the survival of insects through the diapause. However, little is known about the metabolic mechanism of prolonged diapause. The sawfly, Cephalcia chuxiongica (Hymenoptera: Pamphiliidae), is a notorious defoliator of pine trees in southwest China. One of the distinguishing biological characteristics of this pest is the prolonged diapause of about 1.5 years. In this study, the body lipid, carbohydrate (total body sugar, glycogen, trehalose, and glucose), protein, and glycerol contents were measured in diapausing larvae of C. chuxiongica. The results showed that the changes of biochemical composition in C. chuxiongica are associated with the diapause initiation, maintenance, and termination phases. During the initiation phase, trehalose, glucose, and glycerol increased significantly, but glycogen decreased sharply. In general, the lipid, carbohydrate, and glycerol levels decreased gradually across the maintenance phase. At termination phase, the contents of glycogen and lipid persistently decreased, while an increase of trehalose, glucose, and glycerol contents were detected. The protein level was significantly higher at maintenance phase than at initiation and termination phases. It was also found that elevation of trehalose, glucose, and glycerol contents occurred in winter. These implies that the metabolites with altered levels in diapausing larvae of C. chuxiongica are responsible for maintaining a prolonged development and overwintering.  相似文献   
902.
903.
Refractory/relapsed B cell lymphoma patients who received the available anti-CD19 chimeric antigen receptor (CAR) T cells may still experience a short duration of remission. Here in this study, we evaluated the safety and efficacy of a novel dominant-negative programmed cell death-1 (PD-1) armored anti-CD19 CAR T cells. A total of 9 patients (including 4 diffuse large B cell lymphomas, DLBCL, 2 transformed follicular lymphomas, TFL, and 3 follicular lymphomas, FL) received the novel CAR T cells infusion at a dose of more than 1 × 106/kg. Grade ≥ 3 cytokine release syndrome (CRS) and neurotoxicity were observed in 11.1% (n = 1/9) and 11.1% (n = 1/9) of patients, respectively. The overall response rate (ORR) was 77.8% (n = 7/9) and complete response (CR) rate was 55.6% (n = 5/9). Two patients have ongoing CR (all at 20+ months). CAR T cells expanded after infusion and continued to be detectable at 12+ months in patients with ongoing CR. This novel CD19-CAR T cell was safe and effective with durable remissions in patients with refractory/relapsed B cell lymphoma.  相似文献   
904.
ObjectivesIn December 2019, coronavirus disease 2019 (COVID-19) emerged in Wuhan City and rapidly spread across the world. The clinical characteristics of affected patients in different regions and populations may differ. Thus, this study aimed to identify the characteristics of the disease to provide an insight about the prevention and treatment of COVID-19.MethodsData on the demographic characteristics and clinical findings of the patients admitted at the First Hospital of Changsha from January 1, 2020 to February 10, 2020 were assessed.ResultsIn this study, there were 8 (3.8%) asymptomatic, 21 (10.0%) mild upper respiratory tract infection (URTI), and 180 (86.1%) pneumonia cases. In total, 47 (22.5%) patients resided in Wuhan, and 45 (21.5%) had recently traveled to Wuhan before disease onset. Moreover, 19 (9.1%) had contact with people from Wuhan, and 69 (33.0%) were family cluster cases. The median incubation period was approximately 6.3 (range: 1.0–20.0) days. Fever and cough were the most common initial symptoms: 99 (49.3%) patients presented with fever, without cough; 59 (29.4%) with cough, without fever; and 33 (16.4%) with both fever and cough.ConclusionThe symptoms of patients with COVID-19 were relatively mild outside Wuhan, and family cluster was a remarkable epidemic characteristic. Special attention should be paid to asymptomatic patients.  相似文献   
905.
Ancient DNA research has developed rapidly over the past few decades due to improvements in PCR and next‐generation sequencing (NGS) technologies, but challenges still exist. One major challenge in relation to ancient DNA research is to recover genuine endogenous ancient DNA sequences from raw sequencing data. This is often difficult due to degradation of ancient DNA and high levels of contamination, especially homologous contamination that has extremely similar genetic background with that of the real ancient DNA. In this study, we collected whole‐genome sequencing (WGS) data from 6 ancient samples to compare different mapping algorithms. To further explore more effective methods to separate endogenous DNA from homologous contaminations, we attempted to recover reads based on ancient DNA specific characteristics of deamination, depurination, and DNA fragmentation with different parameters. We propose a quick and improved pipeline for separating endogenous ancient DNA while simultaneously decreasing homologous contaminations to very low proportions. Our goal in this research was to develop useful recommendations for ancient DNA mapping and for separation of endogenous DNA to facilitate future studies of ancient DNA.  相似文献   
906.
Climate sensitivity of vegetation has long been explored using statistical or process‐based models. However, great uncertainties still remain due to the methodologies’ deficiency in capturing the complex interactions between climate and vegetation. Here, we developed global gridded climate–vegetation models based on long short‐term memory (LSTM) network, which is a powerful deep‐learning algorithm for long‐time series modeling, to achieve accurate vegetation monitoring and investigate the complex relationship between climate and vegetation. We selected the normalized difference vegetation index (NDVI) that represents vegetation greenness as model outputs. The climate data (monthly temperature and precipitation) were used as inputs. We trained the networks with data from 1982 to 2003, and the data from 2004 to 2015 were used to validate the models. Error analysis and sensitivity analysis were performed to assess the model errors and investigate the sensitivity of global vegetation to climate change. Results show that models based on deep learning are very effective in simulating and predicting the vegetation greenness dynamics. For models training, the root mean square error (RMSE) is <0.01. Model validation also assure the accuracy of our models. Furthermore, sensitivity analysis of models revealed a spatial pattern of global vegetation to climate, which provides us a new way to investigate the climate sensitivity of vegetation. Our study suggests that it is a good way to integrate deep‐learning method to monitor the vegetation change under global change. In the future, we can explore more complex climatic and ecological systems with deep learning and coupling with certain physical process to better understand the nature.  相似文献   
907.
Genetic variation plays a fundamental role in pathogen''s adaptation to environmental stresses. Pathogens with low genetic variation tend to survive and proliferate more poorly due to their lack of genotypic/phenotypic polymorphisms in responding to fluctuating environments. Evolutionary theory hypothesizes that the adaptive disadvantage of genes with low genomic variation can be compensated for structural diversity of proteins through post‐translation modification (PTM) but this theory is rarely tested experimentally and its implication to sustainable disease management is hardly discussed. In this study, we analyzed nucleotide characteristics of eukaryotic translation elongation factor‐1α (eEF‐lα) gene from 165 Phytophthora infestans isolates and the physical and chemical properties of its derived proteins. We found a low sequence variation of eEF‐lα protein, possibly attributable to purifying selection and a lack of intra‐genic recombination rather than reduced mutation. In the only two isoforms detected by the study, the major one accounted for >95% of the pathogen collection and displayed a significantly higher fitness than the minor one. High lysine representation enhances the opportunity of the eEF‐1α protein to be methylated and the absence of disulfide bonds is consistent with the structural prediction showing that many disordered regions are existed in the protein. Methylation, structural disordering, and possibly other PTMs ensure the ability of the protein to modify its functions during biological, cellular and biochemical processes, and compensate for its adaptive disadvantage caused by sequence conservation. Our results indicate that PTMs may function synergistically with nucleotide codes to regulate the adaptive landscape of eEF‐1α, possibly as well as other housekeeping genes, in P. infestans. Compensatory evolution between pre‐ and post‐translational phase in eEF‐1α could enable pathogens quickly adapting to disease management strategies while efficiently maintaining critical roles of the protein playing in biological, cellular, and biochemical activities. Implications of these results to sustainable plant disease management are discussed.  相似文献   
908.
JAK/STAT plays an important role in cytokine signal transduction and it is potentially involved in the proinflammatory response during the early phase of severe acute pancreatitis (SAP). However, whether JAK2 activity is upregulated and whether JAK2 inhibition plays a role in the maintenance of pancreatic homeostasis during SAP is incompletely understood. Here we show that JAK2/STAT3 activity is highly elevated in SAP and blockade of JAK2 by AG-490 protects against SAP-induced pancreatic inflammation and injury. Gene expression and ELISA studies showed that JAK2 inhibition altered the cytokine profiles in both the circulation and pancreases. Further analysis revealed that JAK2 inhibition restored the level of cytokines critical for macrophage polarization towards M2 macrophage. Our findings suggest that pharmacological targeting at JAK2/STAT signalling may be an effective choice of therapeutic interventions against SAP.  相似文献   
909.
由于草本植物持续上侵长白山灌木苔原,形成了强烈的灌草群落种间竞争。本研究以牛皮杜鹃-小叶章群落(Comm.Rhododendron aureum-Deyeuxia purpurea)为对象,根据小叶章的入侵程度设置4种盖度差异显著的样方(无、轻度、中度、重度入侵),并设3个施氮水平(自然状态、添加11.8 kgN·hm-2·a-1及添加23.6 kgN·hm-2·a-1),进行原位氮沉降模拟实验,监测灌木牛皮杜鹃和草本植物小叶章光合特性的差异和变化趋势,研究小叶章入侵苔原带的内在生理机制。结果显示:(1)小叶章净光合速率大于牛皮杜鹃,小叶章盖度越高、其叶绿素含量越高,而牛皮杜鹃叶绿素含量降低,随着小叶章入侵程度的增加,其净光合速率增强;(2)施氮可以提高牛皮杜鹃和小叶章的叶绿素含量和净光合速率,促进植物生长,但小叶章的增幅更大,从而增强了小叶章的竞争优势;(3)施氮和小叶章入侵具有复合作用,小叶章盖度越大,对其施氮导致小叶章净光合速率与叶绿素含量的增幅越大,而牛皮杜鹃的增幅减小。所以小叶章的成功入侵可能与其具有较高的净光合速率有关,并且施氮有利于提高小叶章的净光合速率,随着氮沉降的继续增加,更有利于小叶章的生长并提高其竞争力。  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号