首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30736篇
  免费   2631篇
  国内免费   3596篇
  36963篇
  2024年   91篇
  2023年   410篇
  2022年   984篇
  2021年   1538篇
  2020年   1088篇
  2019年   1399篇
  2018年   1300篇
  2017年   921篇
  2016年   1312篇
  2015年   1943篇
  2014年   2257篇
  2013年   2291篇
  2012年   2909篇
  2011年   2583篇
  2010年   1578篇
  2009年   1447篇
  2008年   1770篇
  2007年   1522篇
  2006年   1414篇
  2005年   1175篇
  2004年   947篇
  2003年   918篇
  2002年   732篇
  2001年   530篇
  2000年   497篇
  1999年   519篇
  1998年   316篇
  1997年   343篇
  1996年   274篇
  1995年   249篇
  1994年   223篇
  1993年   165篇
  1992年   218篇
  1991年   175篇
  1990年   166篇
  1989年   120篇
  1988年   101篇
  1987年   96篇
  1986年   73篇
  1985年   79篇
  1984年   50篇
  1983年   52篇
  1982年   25篇
  1981年   16篇
  1980年   14篇
  1979年   14篇
  1978年   13篇
  1969年   10篇
  1968年   9篇
  1965年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
The phorbol myristate acetate (PMA) stimulated nutrophil respiratory burst has been considered to simply involve the activation of protein kinase C (PKC). However, the PLD activity was also increased by 10‐fold in human neutrophils stimulated with 100 nM PMA. Unexpectedly, U73122, an inhibitor of phospholipase C, was found to significantly inhibit PMA‐stimulated respiratory burst in human neutrophils. U73122 at the concentrations, which were sufficient to inhibit the respiratory burst completely, caused partial inhibition of the PLD activity but no inhibition on PKC translocation and activation, suggesting that PLD activity is also required in PMA‐stimulated respiratory burst. Using 1‐butanol, a PLD substrate, to block phosphatidic acid (PA) generation, the PMA‐stimulated neutrophil respiratory burst was also partially inhibited, further indicating that PLD activation, possibly its hydrolytic product PA and diacylglycerol (DAG), is involved in PMA‐stimulated respiratory burst. Since GF109203X, an inhibitor of PKC that could completely inhibit the respiratory burst in PMA‐stimulated neutrophils, also caused certain suppression of PLD activation, it may suggest that PLD activation in PMA‐stimulated neutrophils might be, to some extent, PKC dependent. To further study whether PLD contributes to the PMA stimulated respiratory burst through itself or its hydrolytic product, 1,2‐dioctanoyl‐sn‐glycerol, an analogue of DAG , was used to prime cells at low concentration, and it reversed the inhibition of PMA‐stimulated respiratory burst by U73122. The results indicate that U73122 may act as an inhibitor of PLD, and PLD activation is required in PMA‐stimulated respiratory burst.  相似文献   
82.
Wavefront shaping can compensate the wavefront distortions in deep tissue focusing, leading to an improved penetration depth. However, when using the backscattered signals as the feedback, unexpected compensation bias may be introduced, resulting in focusing position deviations or even no focus in the illumination focal plane. Here we investigated the reliability of wavefront shaping based on coherent optical adaptive technique in deep tissue focusing by measuring the position deviations between the foci in the illumination focal plane and the epi‐detection plane. The experimental results show that when the penetration depth reaches 150 μm in mouse brain tissue (with scattering coefficient ~22.42 mm?1) using a 488 nm laser and an objective lens with 0.75 numerical aperture, the center of the real focus will deviate out of one radius range of the Airy disk while the optimized focus in the epi‐detection plane maintained basically at the center. With the penetration depth increases, the peak to background ratio of the focus in the illumination focal plane decreases faster than that in the epi‐detection plane. The results indicate that when the penetration depth reaches 150 μm, feedback based on backscattered signals will make wavefront shaping lose its reliability, which may provide a guidance for applications of non‐invasive precise optogenetics or deep tissue optical stimulation using wavefront shaping methods. A, Intensity distribution in the epi‐detection plane and the illumination focal plane before and after correction, corresponding to brain sections with 250 and 300 μm thickness, respectively. Scale bar is 2 μm. B, Averaged focusing deviations in the epi‐detection plane (optimized) and the illumination focal plane (monitored) after compensation. The unit of the ordinate is one Airy disk diameter. Black dashed line represents one Airy disk radius. Bars represent the SE of each measurement set.   相似文献   
83.
Achieving high-performance in all-small-molecule organic solar cells (ASM-OSCs) significantly relies on precise nanoscale phase separation through domain size manipulation in the active layer. Nonetheless, for ASM-OSC systems, forging a clear connection between the tuning of domain size and the intricacies of phase separation proves to be a formidable challenge. This study investigates the intricate interplay between domain size adjustment and the creation of optimal phase separation morphology, crucial for ASM-OSCs’ performance. It is demonstrated that exceptional phase separation in ASM-OSCs’ active layer is achieved by meticulously controlling the continuity and uniformity of domains via re-packing process. A series of halogen-substituted solvents (Fluorobenzene, Chlorobenzene, Bromobenzene, and Iodobenzene) is adopted to tune the re-packing kinetics, the ASM-OSCs treated with CB exhibited an impressive 16.2% power conversion efficiency (PCE). The PCE enhancement can be attributed to the gradual crystallization process, promoting a smoothly interconnected and uniformly distributed domain size. This, in turn, leads to a favorable phase separation morphology, enhanced charge transfer, extended carrier lifetime, and consequently, reduced recombination of free charges. The findings emphasize the pivotal role of re-packing kinetics in achieving optimal phase separation in ASM-OSCs, offering valuable insights for designing high-performance ASM-OSCs fabrication strategies.  相似文献   
84.
85.
86.
Background: Studies investigating the association between genetic polymorphism of glutathione S-transferase T1 (GSTT1) and risk of colorectal cancer have reported conflicting results. In order to clarify the effect of GSTT1 polymorphism on the risk of developing colorectal cancer, we carried out a meta-analysis using published data to obtain more precise estimates of risk. Methods: Electronic searches of PubMed and EMBASE were conducted to select studies for this meta-analysis. Papers were included if they were observational studies investigating the association between GSTT1 polymorphism and colorectal cancer risk. The principal outcome measure was the odds ratio (OR) with 95% confidence interval (CI) for the risk of colorectal cancer associated with GSTT1 null genotype. Results: We identified 30 eligible studies, which included 7635 cases and 12,911 controls. The combined results based on all studies showed that there was a statistically significant link between GSTT1 null genotype and colorectal cancer risk (OR = 1.20, 95% CI = 1.03–1.40). In the analysis of ethnic groups, we observed distinct differences associated with GSTT1 null genotype, the pooled odds ratios for the GSTT1 polymorphism were 1.32 in Caucasians (95% CI = 1.09–1.58) and 1.03 in Asians (95% CI = 0.81–1.32). As far as concerned the interaction between GSTT1 genotype and colorectal cancer risk in relation to smoking history, there was no increase in risk for smokers or nonsmokers with the GSTT1 null genotype (smokers: OR = 1.13, 95% CI = 0.80–1.60, nonsmokers: OR = 0.99, 95% CI = 0.71–1.38). When stratifying by the location of colorectal cancer, we found that there was a statistically significant link in rectal cancer (OR = 1.50, 95% CI = 1.09–2.07), but not in colon cancer (OR = 1.33, 95% CI = 0.94–1.88). No associations could be detected between null GSTT1 polymorphism and age, sex, tumor stage and differentiation. Conclusion: Our current study demonstrates that GSTT1 null genotype is associated with an increased risk of colorectal cancer, specifically, among Caucasians.  相似文献   
87.
The tumor suppressor PTEN is now understood to regulate cellular processes at the cytoplasmic membrane, where it classically regulates PI3K signaling, as well as in the nucleus where multiple roles in controlling cell cycle and genome stability have been elucidated. Mechanisms that dictate nuclear import and, less extensively, nuclear export of PTEN have been described, however the relevance of these processes in disease states, particularly cancer, remain largely unknown. We investigated the impact of acid ceramidase on the nuclear-cytoplasmic trafficking of PTEN. Immunohistochemical analysis of a human prostate tissue microarray revealed that nuclear PTEN was lost in patients whose tumors had elevated acid ceramidase. We found that acid ceramidase promotes a reduction in nuclear PTEN that is dependent upon sphingosine 1-phosphate-mediated activation of Akt. We were further able to show that sphingosine 1-phosphate promotes formation of a complex between Crm1 and PTEN, and that leptomycin B prevents acid ceramidase and sphingosine 1-phosphate mediated loss of nuclear PTEN, suggesting an active exportin-mediated event. To investigate whether the tumor promoting aspects of acid ceramidase in prostate cancer depend upon its ability to export PTEN from the nucleus, we used enforced nuclear expression of PTEN to study docetaxel-induced apoptosis and cell killing, proliferation, and xenoengraftment. Interestingly, while acid ceramidase was able to protect cells expressing wild type PTEN from docetaxel, promote proliferation and xenoengraftment, acid ceramidase had no impact in cells expressing PTEN-NLS. These findings suggest that acid ceramidase, through sphingosine 1-phosphate, promotes nuclear export of PTEN as a means of promoting tumor formation, cell proliferation, and resistance to therapy.  相似文献   
88.
C-type lectins are pattern-recognition proteins which are functionally important for pathogen recognition and immune regulation in vertebrates and invertebrates. In this study, a lectin cDNA named as Es-Lectin was cloned and characterized from the Chinese mitten crab, Eriocheir sinensis. The full-length sequence of this Es-Lectin cDNA was 651 bp, including an open reading frame of 483 bp encoding 160 amino acids. The predicted molecular weight of the Es-Lectin was 11.8 kDa. A typical signal peptide of 21 amino acids was deduced at the N-terminus of the predicted protein. This Es-Lectin belongs to a C-type lectin and contains six cysteines, a conserved EPN motif (Glu-Pro-Asn) and an imperfect WND (Trp-Asn-Asp) motif (FND, Phe-Asn-Asp). This Es-Lectin had 55% and 32% identity with other two C-type lectins in E. sinensis, and 29-36% homology with decapods. Although the Es-Lectin was also expressed in gill, hepatopancreas, intestine, muscle and stomach, its expression in haemocytes was the greatest. The expression of Es-Lectins in haemocytes increased at 1.5 h after the Aeromonas hydrophila challenge. After a slight decrease, the Es-Lectin expression in haemocytes significantly increased at 48 h post-challenge. The diverse distribution of Es-Lectin and its enhancement by bacterial challenge indicate that C-type lectins are important in the innate immune response to bacterial infection, and can be activated for innate immune response in crab at the initial stage after pathogen infection.  相似文献   
89.
Pre‐eclampsia (PE) is deemed an ischemia‐induced metabolic disorder of the placenta due to defective invasion of trophoblasts during placentation; thus, the driving role of metabolism in PE pathogenesis is largely ignored. Since trophoblasts undergo substantial glycolysis, this study aimed to investigate its function and regulatory mechanism by AMPK in PE development. Metabolomics analysis of PE placentas was performed by gas chromatography–mass spectrometry (GC–MS). Trophoblast‐specific AMPKα1‐deficient mouse placentas were generated to assess morphology. A mouse PE model was established by Reduced Uterine Perfusion Pressure, and placental AMPK was modulated by nanoparticle‐delivered A769662. Trophoblast glucose uptake was measured by 2‐NBDG and 2‐deoxy‐d‐[3H] glucose uptake assays. Cellular metabolism was investigated by the Seahorse assay and GC–MS.PE complicated trophoblasts are associated with AMPK hyperactivation due not to energy deficiency. Thereafter, AMPK activation during placentation exacerbated PE manifestations but alleviated cell death in the placenta. AMPK activation in trophoblasts contributed to GLUT3 translocation and subsequent glucose metabolism, which were redirected into gluconeogenesis, resulting in deposition of glycogen and accumulation of phosphoenolpyruvate; the latter enhanced viability but compromised trophoblast invasion. However, ablation of AMPK in the mouse placenta resulted in decreased glycogen deposition and structural malformation. These data reveal a novel homeostasis between invasiveness and viability in trophoblasts, which is mechanistically relevant for switching between the ‘go’ and ‘grow’ cellular programs.

Pre‐eclampsia (PE) is associated with trophoblast AMPK hyperactivation, presumably due to LKB1 phosphorylation, and glucose uptake is consequently increased via trafficking of GLUT3 from the cytosol to the plasma membrane. Such translocation enhances glycolytic flux and redirects glucose metabolic intermediates into gluconeogenesis, resulting in PEP accumulation, which not only benefits cell survival but also suppresses invasion by repressing MMPs, and thus in turn modulates switching between the ‘go’ and ‘grow’ cellular programs.  相似文献   
90.

Background

Somatically acquired structure variations (SVs) and copy number variations (CNVs) can induce genetic changes that are directly related to tumor genesis. Somatic SV/CNV detection using next-generation sequencing (NGS) data still faces major challenges introduced by tumor sample characteristics, such as ploidy, heterogeneity, and purity. A simulated cancer genome with known SVs and CNVs can serve as a benchmark for evaluating the performance of existing somatic SV/CNV detection tools and developing new methods.

Results

SCNVSim is a tool for simulating somatic CNVs and structure variations SVs. Other than multiple types of SV and CNV events, the tool is capable of simulating important features related to tumor samples including aneuploidy, heterogeneity and purity.

Conclusions

SCNVSim generates the genomes of a cancer cell population with detailed information of copy number status, loss of heterozygosity (LOH), and event break points, which is essential for developing and evaluating somatic CNV and SV detection methods in cancer genomics studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号