首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21443篇
  免费   2054篇
  国内免费   3581篇
  2024年   58篇
  2023年   263篇
  2022年   610篇
  2021年   985篇
  2020年   771篇
  2019年   977篇
  2018年   930篇
  2017年   721篇
  2016年   935篇
  2015年   1373篇
  2014年   1705篇
  2013年   1686篇
  2012年   2136篇
  2011年   1923篇
  2010年   1250篇
  2009年   1151篇
  2008年   1383篇
  2007年   1221篇
  2006年   1183篇
  2005年   947篇
  2004年   812篇
  2003年   789篇
  2002年   599篇
  2001年   321篇
  2000年   305篇
  1999年   288篇
  1998年   212篇
  1997年   170篇
  1996年   150篇
  1995年   116篇
  1994年   118篇
  1993年   77篇
  1992年   98篇
  1991年   78篇
  1990年   74篇
  1989年   66篇
  1988年   45篇
  1987年   38篇
  1986年   37篇
  1985年   48篇
  1984年   53篇
  1983年   37篇
  1982年   38篇
  1981年   43篇
  1980年   24篇
  1979年   26篇
  1978年   23篇
  1977年   24篇
  1975年   23篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
891.
Single wavelength fluorescence cross-correlation spectroscopy (SW-FCCS), introduced to study biomolecular interactions, has recently been reported to monitor enzyme activity by using a newly developed fluorescent protein variant together with cyan fluorescent protein. Here, for the first time to our knowledge, SW-FCCS is applied to detect interactions between membrane receptors in vivo by using the widely used enhanced green fluorescent protein and monomeric red fluorescent protein. The biological system studied here is the epidermal growth factor/ErbB receptor family, which plays pivotal roles in the development of organisms ranging from worms to humans. It is widely thought that a ligand binds to the monomeric form of the receptor and induces its dimeric form for activation. By using SW-FCCS and F?rster resonance energy transfer, we show that the epidermal growth factor receptor and ErbB2 have preformed homo- and heterodimeric structures on the cell surface and quantitation of dimer fractions is performed by SW-FCCS. These receptors are major targets of anti-cancer drug development, and the receptors' homo- and heterodimeric structures are relevant for such developments.  相似文献   
892.
The present study was undertaken to investigate the protective effect of H2S against myocardial ischemia-reperfusion (I/R) injury and its possible mechanism by using isolated heart perfusion and patch clamp recordings. Rat isolated hearts were Langendorff-perfused and subjected to a 30-minute ischemia insult followed by a 30-minute reperfusion. The heart function was assessed by measuring the LVDP, +/-dP/dt max, and the arrhythmia score. The results showed that the treatment of hearts with a H2S donor (40 micromol/L NaHS) during reperfusion resulted in significant improvement in heart function compared with the I/R group (LVDP recovered to 85.0% +/- 6.4% vs. 35.0% +/- 6.1%, +dP/dt max recovered to 80.9% +/- 4.2% vs. 43.0% +/- 6.4%, and -dP/dt max recovered to 87.4% +/- 7.3% vs. 53.8% +/- 4.9%; p < 0.01). The arrhythmia scores also improved in the NaHS group compared with the I/R group (1.5 +/- 0.2 vs. 4.0 +/- 0.4, respectively; p < 0.001). The cardioprotective effect of NaHS during reperfusion could be blocked by an ATP-sensitive potassium channel (K ATP) blocker (10 micromol/L glibenclamide). In single cardiac myocytes, NaHS increased the open probability of K ATP channels from 0.07 +/- 0.03 to 0.15 +/- 0.08 after application of 40 mumol/L NaHS and from 0.07 +/- 0.03 to 0.36 +/- 0.15 after application of 100 mumol/L NaHS. These findings provide the first evidence that H2S increases the open probability of K ATP in cardiac myocytes, which may be responsible for cardioprotection against I/R injury during reperfusion.  相似文献   
893.
Halophage SNJ1 was induced with mitomycin C from Natrinema sp. strain F5. The phage produces plaques on Natrinema sp. strain J7 only. The phage has a head of about 67 nm in diameter and a tail of 570 nm in length and belongs morphologically to the family Siphoviridae. The phage is strongly salt dependent; NaCl concentration affects the integrity of SNJ1, phage adsorption, and plaque formation. The optimal NaCl concentration for phage adsorption and plaque formation is 30% and 25%, respectively.  相似文献   
894.
The gene sfp1, which encodes a predicted serine proteinase designated SFP1, was isolated by the screening of a gene library of the feather-degrading strain Streptomyces fradiae var.k11. The open reading frame of sfp1 encodes a protein of 454 amino acids with a calculated molecular mass of 46.19 kDa. Sequence analysis reveals that SFP1 possesses a typical pre-pro-mature organization that consists of a signal sequence, an N-terminal propeptide region, and a mature proteinase domain. The pre-enzyme of SFP1 was expressed in Escherichia coli and consequently purified. The 25.6 kDa fraction with protease activity separated by gel filtration chromatography indicated that the mature enzyme of SFP1 was formed by autolysis of the propeptide after its expression. The purified SFP1 is active under a broad range of pH and temperature. SFP1 has pH and temperature optima of pH 8.5 and 65 degrees C for its caseinolytic activity and pH 9 and 62 degrees C for its keratinolytic activity. SFP1 was sharply inhibited by the serine proteinase inhibitor phenylmethyl sulfonyl fluoride and exhibited a good stability to solvents, detergents, and salts. Comparison of the protease activity of SFP1 with other commercial proteases indicates that SFP1 has a considerable caseinolytic and keratinolytic activity as does proteinase K.  相似文献   
895.
The O-chain polysaccharide of the lipopolysaccharide from the bacterium Naxibacter alkalitolerans strain YIM 31775(T) was characterized. The structure was studied by means of chemical analysis and 2D NMR spectroscopy and shown to be built up by the following tetrasaccharide repeating unit: -->3)-alpha-D-FucpNAc-(1-->2)-beta-D-Quip3NHBu-(1-->2)-alpha-D-Rhap-(1-->)-beta-D-Galp-(1--> where HBu is hydroxy-butanoyl.  相似文献   
896.
The environmental carcinogen glycidaldehyde (GDA) and therapeutic chloroethylnitrosoureas (CNUs) can form hydroxymethyl etheno and ring-saturated ethano bases, respectively. The mutagenic potential of these adducts relies on their miscoding properties and repair efficiency. In this work, the ability of human thymine-DNA glycosylase (TDG) to excise 8-(hydroxymethyl)-3,N(4)-ethenocytosine (8-hm-varepsilonC) and 3,N(4)-ethanocytosine (EC) was investigated and compared with varepsilonC, a known substrate for TDG. When tested using defined oligonucleotides containing a single adduct, TDG is able to excise 8-hm-varepsilonC but not EC. The 8-hm-varepsilonC activity mainly depends on guanine pairing with the adduct. TDG removes 8-hm-varepsilonC less efficiently than varepsilonC but its activity can be significantly enhanced by human AP endonuclease 1 (APE1), a downstream enzyme in the base excision repair. TDG did not show any detectable activity toward EC when placed in various neighboring sequences, including the 5'-CpG site. Molecular modeling revealed a possible steric clash between the non-planar EC exocyclic ring and residue Asn 191 within the TDG active site, which could account for the lack of TDG activity toward EC. TDG was not active against the bulkier exocyclic adduct 3,N(4)-benzethenocytosine, nor the two adenine derivatives with same modifications as the cytosine derivatives, 7-hm-varepsilonA and EA. These findings expand the TDG substrate range and aid in understanding the structural requirements for TDG substrate specificity.  相似文献   
897.
Vaccinia virus (VV) infection is known to inhibit dendritic cells (DC) functions in vitro. Paradoxically, VV is also highly immunogenic and thus has been used as a vaccine. In the present study, we investigated the effects of an in vivo VV infection on DC function by focusing on early innate immunity. Our data indicated that DC are activated upon in vivo VV infection of mice. Splenic DC from VV-infected mice expressed elevated levels of MHC class I and co-stimulatory molecules on their cell surface and exhibited the enhanced potential to produce cytokines upon LPS stimulation. DC from VV-infected mice also expressed a high level of interferon-beta. However, a VV infection resulted in the down-regulation of MHC class II expression and the impairment of antigen presentation to CD4 T cells by DC. Thus, during the early stage of a VV infection, although DC are impaired in some of the critical antigen presentation functions, they can promote innate immune defenses against viral infection.  相似文献   
898.
The expression of MHC class II molecules and the invariant chain (Ii) chaperone, is coordinately regulated in professional antigen presenting cells (APC). Ii facilitates class II subunit folding as well as transit and retention in mature endosomal compartments rich in antigenic peptides in these APC. Yet, in nonprofessional APC such as tumors, fibroblasts and endocrine tissues, the expression of class II subunits and Ii may be uncoupled. Studies of nonprofessional APC indicate class II molecules access antigenic peptides by distinct, but poorly defined pathways in the absence of Ii. Here, investigations demonstrate that nonprofessional APC such as human fibroblasts lacking Ii internalize antigenic peptides prior to the binding of these ligands to recycling class II molecules. By contrast, fibroblast lines expressing Ii favor exogenous peptides binding directly to cell surface class II molecules without a need for ligand internalization. Endocytosis of class II molecules was enhanced in cells lacking Ii compared with Ii-expressing APC. These results suggest enhanced reliance on the endocytic recycling pathway for functional class II presentation in nonprofessional APC.  相似文献   
899.
Transforming growth factor-beta (TGF-beta) superfamily signaling has been implicated in many developmental processes, including pancreatic development. Previous studies are conflicting with regard to an exact role for TGF-beta signaling in various aspects of pancreatic organogenesis. Here we have investigated the role of TGF-beta isoform signaling in embryonic pancreas differentiation and lineage selection. The TGF-beta isoform receptors (RI, RII and ALK1) were localized mainly to both the pancreatic epithelium and mesenchyme at early stages of development, but then with increasing age localized to the pancreatic islets and ducts. To determine the specific role of TGF-beta isoforms, we functionally inactivated TGF-beta signaling at different points in the signaling cascade. Disruption of TGF-beta signaling at the receptor level using mice overexpressing the dominant-negative TGF-beta type II receptor showed an increase in endocrine precursors and proliferating endocrine cells, with an abnormal accumulation of endocrine cells around the developing ducts of mid-late stage embryonic pancreas. This pattern suggested that TGF-beta isoform signaling may suppress the origination of secondary transition endocrine cells from the ducts. Secondly, TGF-beta isoform ligand inhibition with neutralizing antibody in pancreatic organ culture also led to an increase in the number of endocrine-positive cells. Thirdly, hybrid mix-and-match in vitro recombinations of transgenic pancreatic mesenchyme and wild-type epithelium also led to increased endocrine cell differentiation, but with different patterns depending on the directionality of the epithelial-mesenchymal signaling. Together these results suggest that TGF-beta signaling is important for restraining the growth and differentiation of pancreatic epithelial cells, particularly away from the endocrine lineage. Inhibition of TGF-beta signaling in the embryonic period may thus allow pancreatic epithelial cells to progress towards the endocrine lineage unchecked, particularly as part of the secondary transition of pancreatic endocrine cell development. TGF-beta RII in the ducts and islets may normally serve to downregulate the production of beta cells from embryonic ducts.  相似文献   
900.
Thrombopoietin receptor (Mpl) belongs to the cytokine receptor surperfamily with a large extracellular N-terminal portion responsible for cytokine recognition and binding. Thrombopoietin (TPO) has so far been the only widely studied cytokine for Mpl. However we have recently identified human NUDC (hNUDC), previously described as a human homolog of a fungal nuclear migration protein, as another putative binding partner of Mpl. The purpose of this study is to test the extent of the functioning of hNUDC by identifying protein-protein interactions with Mpl in mammalian cells. The full-length cDNAs encoding Mpl and hNUDC were cloned into pEGFP-N1 and pDsRed2-N1 respectively which were subsequently expressed as Mpl-EGFP (green) and hNUDC-DsRed (red) fusion proteins. Using ELISA and immunofluorescence studies, we have demonstrated the direct binding of hNUDC to cell surface-captured Mpl. We also observed that hNUDC induced significant changes in cellular morphology in NIH 3T3 cells stably transfected with pMpl-EGFP. Interestingly, these morphological changes were characteristic of cells undergoing megakaryocyte differentiation. Extracellular-signal-regulated protein kinases 1 and 2 (ERK1/2) have been shown to mediate such megakaryocyte-like differentiation. In addition, co-expression of Mpl-EGFP and hNUDC-DsRed led to the release of hNUDC-DsRed into the culture medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号