首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33937篇
  免费   3055篇
  国内免费   2476篇
  39468篇
  2024年   89篇
  2023年   418篇
  2022年   813篇
  2021年   1326篇
  2020年   963篇
  2019年   1181篇
  2018年   1158篇
  2017年   797篇
  2016年   1193篇
  2015年   2021篇
  2014年   2247篇
  2013年   2492篇
  2012年   3037篇
  2011年   2831篇
  2010年   1691篇
  2009年   1505篇
  2008年   1832篇
  2007年   1645篇
  2006年   1505篇
  2005年   1238篇
  2004年   1155篇
  2003年   985篇
  2002年   892篇
  2001年   719篇
  2000年   657篇
  1999年   586篇
  1998年   326篇
  1997年   314篇
  1996年   297篇
  1995年   248篇
  1994年   265篇
  1993年   180篇
  1992年   320篇
  1991年   295篇
  1990年   246篇
  1989年   229篇
  1988年   192篇
  1987年   156篇
  1986年   146篇
  1985年   151篇
  1984年   142篇
  1983年   103篇
  1982年   90篇
  1980年   59篇
  1979年   75篇
  1978年   69篇
  1977年   58篇
  1976年   67篇
  1975年   63篇
  1974年   75篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.

Background

As the amount of data from genome wide association studies grows dramatically, many interesting scientific questions require imputation to combine or expand datasets. However, there are two situations for which imputation has been problematic: (1) polymorphisms with low minor allele frequency (MAF), and (2) datasets where subjects are genotyped on different platforms. Traditional measures of imputation cannot effectively address these problems.

Methodology/Principal Findings

We introduce a new statistic, the imputation quality score (IQS). In order to differentiate between well-imputed and poorly-imputed single nucleotide polymorphisms (SNPs), IQS adjusts the concordance between imputed and genotyped SNPs for chance. We first evaluated IQS in relation to minor allele frequency. Using a sample of subjects genotyped on the Illumina 1 M array, we extracted those SNPs that were also on the Illumina 550 K array and imputed them to the full set of the 1 M SNPs. As expected, the average IQS value drops dramatically with a decrease in minor allele frequency, indicating that IQS appropriately adjusts for minor allele frequency. We then evaluated whether IQS can filter poorly-imputed SNPs in situations where cases and controls are genotyped on different platforms. Randomly dividing the data into “cases” and “controls”, we extracted the Illumina 550 K SNPs from the cases and imputed the remaining Illumina 1 M SNPs. The initial Q-Q plot for the test of association between cases and controls was grossly distorted (λ = 1.15) and had 4016 false positives, reflecting imputation error. After filtering out SNPs with IQS<0.9, the Q-Q plot was acceptable and there were no longer false positives. We then evaluated the robustness of IQS computed independently on the two halves of the data. In both European Americans and African Americans the correlation was >0.99 demonstrating that a database of IQS values from common imputations could be used as an effective filter to combine data genotyped on different platforms.

Conclusions/Significance

IQS effectively differentiates well-imputed and poorly-imputed SNPs. It is particularly useful for SNPs with low minor allele frequency and when datasets are genotyped on different platforms.  相似文献   
122.
Eighteen strains of xylariaceous fungi have been screened for higher activities of cellulolytic enzymes,Trichoderma reesei QM 9414 was also examined for comparison. Strains ofXylaria anisopleura andX. regalis had higher endocellulase (CMCase) and exocellulase (Avicelase) activities after 2 weeks' incubation.Hypoxylon stygium produced the highest activity of -glucosidase 3 days after inoculation. The optimum pH for these cellulolytic enzymes was approx. 5.0 and the optimum temperatures ranged from 37 to 50°C. A mixed culture process usingT. reesei QM 9414 andH. stygium was developed to obtain enhanced synthesis of cellulase. -Glucosidase activities in the mixed culture increased within 48h whenH. stygium was introduced after 24h.  相似文献   
123.
124.
The oscillations of circadian genes control the daily circadian clock, regulating a diverse array of physiologies with the 24-hour light/dark cue across a wide variety of organisms. Here we first show that before embryonic circadian rhythms occur, the oscillation (nucleocytoplasmic shuttling) of core circadian gene Clock is tissue-specific and correlated with the state of differentiation during both early development and later pancreas organogenesis. Disruption of Clock as well as Timeless in the embryonic pancreas does not block pancreatic differentiation but alters the balance and maturity of endocrine and exocrine cells. Molecular analysis indicates that inhibition of Clock or Timeless expression disturbs not only cell cycle regulators, but also Wnt- and Notch-signaling components, whose oscillations establish the timing mechanism in somitogenesis. Thus, our results provide new insights about circadian genes' function in control of the timing of differentiation during embryonic development.  相似文献   
125.
Mammalian lung development is a complex biological process, which is temporally and spatially regulated by growth factors, hormones, and extracellular matrix proteins. Abnormal changes of these molecules often lead to impaired lung development, and thus pulmonary diseases. Epithelial-mesenchymal interactions are crucial for fetal lung development. This paper reviews two interconnected pathways, pleiotrophin and Wnt/β-catenin, which are involved in fibroblast and epithelial cell communication during fetal lung development.  相似文献   
126.
As well as killing pest insects, the rhizosphere competent insect-pathogenic fungus Metarhizium robertsii also boosts plant growth by providing nitrogenous nutrients and increasing resistance to plant pathogens. Plant roots secrete abundant nutrients but little is known about their utilization by Metarhizium spp. and the mechanistic basis of Metarhizium-plant associations. We report here that M. robertsii produces an extracellular invertase (MrInv) on plant roots. Deletion of MrInv (⊿MrInv) reduced M. robertsii growth on sucrose and rhizospheric exudates but increased colonization of Panicum virgatum and Arabidopsis thaliana roots. This could be accounted for by a reduction in carbon catabolite repression in ⊿MrInv increasing production of plant cell wall-degrading depolymerases. A non-rhizosphere competent scarab beetle specialist Metarhizium majus lacks invertase which suggests that rhizospheric competence may be related to the sugar metabolism of different Metarhizium species.  相似文献   
127.
HPLC6 is the major component of liver-type antifreeze polypeptides (AFPs) from the winter flounder, Pleuronectes americanus. To facilitate mutagenesis studies of this protein, a gene encoding the 37-amino acid mature polypeptide was chemically synthesized and cloned into the Tac cassette immediately after the bacterial ompA leader sequence for direct excretion of the AFP into the culture medium. Escherichia coli transformant with the construct placIQpar8AF was cultured in M9 medium. The recombinant AFP (rAFP) was detected by a competitive enzyme-linked immunosorbent assay (ELISA). After IPTG induction, a biologically active rAFP was expressed. The majority of the rAFP was excreted into the culture medium with only trace amounts trapped in the periplasmic space and cytoplasm. After 18 h of induction, the accumulated rAFP in the culture medium amounted to about 16 mg/L. The excreted AFP was purified from the culture medium by a single-step reverse-phase HPLC. Mass spectrometric and amino acid composition analyses confirmed the identity of the purified product. The rAFP, which lacked amidation at the C-terminal, was about 70% active when compared to the amidated wild-type protein, thus confirming the importance of C-terminal cap structure in protein stability and function.  相似文献   
128.
129.

Background

Coxsackie virus A16 (CVA16) infections have become a serious public health problem in the Asia-Pacific region. It manifests most often in childhood exanthema, commonly known as hand-foot-and-mouth disease (HFMD). There are currently no vaccine or effective medical treatments available.

Principal Finding

In this study, we describe the production, purification and characterization of CVA16 virus produced from Vero cells grown on 5 g/L Cytodex 1 microcarrier beads in a five-liter serum-free bioreactor system. The viral titer was found to be >106 the tissue culture''s infectious dose (TCID50) per mL within 7 days post-infection when a multiplicity of infection (MOI) of 10−5 was used for initial infection. Two CVA16 virus fractions were separated and detected when the harvested CVA16 viral concentrate was purified by a sucrose gradient zonal ultracentrifugation. The viral particles detected in the 24–28% sucrose fractions had low viral infectivity and RNA content. The viral particles obtained from 35–38% sucrose fractions were found to have high viral infectivity and RNA content, and composed of four viral proteins (VP1, VP2, VP3 and VP4), as shown by SDS-PAGE analyses. These two virus fractions were formalin-inactivated and only the infectious particle fraction was found to be capable of inducing CVA16-specific neutralizing antibody responses in both mouse and rabbit immunogenicity studies. But these antisera failed to neutralize enterovirus 71. In addition, rabbit antisera did not react with any peptides derived from CVA16 capsid proteins. Mouse antisera recognized a single linear immunodominant epitope of VP3 corresponding to residues 176–190.

Conclusion

These results provide important information for cell-based CVA16 vaccine development. To eliminate HFMD, a bivalent EV71/CVA16 vaccine formulation is necessary.  相似文献   
130.
ABSTRACT: BACKGROUND: Etoposide (epipodophyllotoxin) is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs). However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. RESULTS: To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L.) genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36) and two protein-encoding genes (Homeobox and CDPK-related genes) were detected in the etoposide-treated plants (S0 generation) in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae) and the indica cultivar (93-11). DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36). Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2) of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. CONCLUSIONS: Our results demonstrate that etoposide imposes a similar genotoxic stress on plant cells as it does on animal and human cells, which may induce transgenerational genomic instability by instigating transpositional activation of otherwise dormant TEs. In addition, we show for the first time that etoposide may induce epigenetic instability in the form of altered DNA methylation patterns in eukaryotes. However, penetration of the genotoxic effects of etoposide on plant cells, as being reflected as genetic and epigenetic instability, appears to be in a strictly genotype- and/or generation-dependent manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号