首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1872篇
  免费   128篇
  2000篇
  2023年   4篇
  2022年   23篇
  2021年   30篇
  2020年   16篇
  2019年   21篇
  2018年   30篇
  2017年   12篇
  2016年   51篇
  2015年   99篇
  2014年   94篇
  2013年   112篇
  2012年   154篇
  2011年   159篇
  2010年   102篇
  2009年   84篇
  2008年   85篇
  2007年   103篇
  2006年   79篇
  2005年   86篇
  2004年   108篇
  2003年   78篇
  2002年   83篇
  2001年   49篇
  2000年   44篇
  1999年   41篇
  1998年   20篇
  1997年   13篇
  1996年   17篇
  1995年   12篇
  1994年   6篇
  1993年   12篇
  1992年   20篇
  1991年   17篇
  1990年   12篇
  1989年   20篇
  1988年   13篇
  1987年   10篇
  1986年   10篇
  1985年   8篇
  1984年   9篇
  1983年   3篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1978年   5篇
  1977年   7篇
  1975年   10篇
  1974年   4篇
  1972年   2篇
  1966年   2篇
排序方式: 共有2000条查询结果,搜索用时 15 毫秒
11.
12.
Photosensitizers are common in nature and play diverse roles as defense compounds and pathogenicity determinants and as important molecules in many biological processes. Toxoflavin, a photosensitizer produced by Burkholderia glumae, has been implicated as an essential virulence factor causing bacterial rice grain rot. Toxoflavin produces superoxide and H2O2 during redox cycles under oxygen and light, and these reactive oxygen species cause phytotoxic effects. To utilize toxoflavin as a selection agent in plant transformation, we identified a gene, tflA, which encodes a toxoflavin‐degrading enzyme in the Paenibacillus polymyxa JH2 strain. TflA was estimated as 24.56 kDa in size based on the amino acid sequence and is similar to a ring‐cleavage extradiol dioxygenase in the Exiguobacterium sp. 255‐15; however, unlike other extradiol dioxygenases, Mn2+and dithiothreitol were required for toxoflavin degradation by TflA. Here, our results suggested toxoflavin is a photosensitizer and its degradation by TflA serves as a light‐dependent selection marker system in diverse plant species. We examined the efficiencies of two different plant selection systems, toxoflavin/tflA and hygromycin/hygromycin phosphotransferase (hpt) in both rice and Arabidopsis. The toxoflavin/tflA selection was more remarkable than hygromycin/hpt selection in the high‐density screening of transgenic Arabidopsis seeds. Based on these results, we propose the toxoflavin/tflA selection system, which is based on the degradation of the photosensitizer, provides a new robust nonantibiotic selection marker system for diverse plants.  相似文献   
13.

Background

Unlike Caucasian populations, genetic factors contributing to the risk of type 2 diabetes mellitus (T2DM) are not well studied in Asian populations. In light of this, and the fact that copy number variation (CNV) is emerging as a new way to understand human genomic variation, the objective of this study was to identify type 2 diabetes–associated CNV in a Korean cohort.

Methodology/Principal Findings

Using the Illumina HumanHap300 BeadChip (317,503 markers), genome-wide genotyping was performed to obtain signal and allelic intensities from 275 patients with type 2 diabetes mellitus (T2DM) and 496 nondiabetic subjects (Total n = 771). To increase the sensitivity of CNV identification, we incorporated multiple factors using PennCNV, a program that is based on the hidden Markov model (HMM). To assess the genetic effect of CNV on T2DM, a multivariate logistic regression model controlling for age and gender was used. We identified a total of 7,478 CNVs (average of 9.7 CNVs per individual) and 2,554 CNV regions (CNVRs; 164 common CNVRs for frequency>1%) in this study. Although we failed to demonstrate robust associations between CNVs and the risk of T2DM, our results revealed a putative association between several CNVRs including chr15:45994758–45999227 (P = 8.6E-04, Pcorr = 0.01) and the risk of T2DM. The identified CNVs in this study were validated using overlapping analysis with the Database of Genomic Variants (DGV; 71.7% overlap), and quantitative PCR (qPCR). The identified variations, which encompassed functional genes, were significantly enriched in the cellular part, in the membrane-bound organelle, in the development process, in cell communication, in signal transduction, and in biological regulation.

Conclusion/Significance

We expect that the methods and findings in this study will contribute in particular to genome studies of Asian populations.  相似文献   
14.
Chromosomal translocations are rare in myelodysplastic syndrome (MDS) and their impact on overall survival (OS) and response to hypomethylating agents (HMA) is unknown. The prognostic impact of the revised International Prognostic Scoring System (IPSS-R) and for chromosomal translocations was assessed in 751 patients from the Korea MDS Registry. IPSS-R effectively discriminated patients according to leukaemia evolution risk and OS. We identified 40 patients (5.3%) carrying translocations, 30 (75%) of whom also fulfilled complex karyotype criteria. Translocation presence was associated with a shorter OS (median, 12.0 versus 79.7 months, P < 0.01). Multivariate analysis demonstrated that translocations (hazard ratio [HR] 1.64 [1.06–2.63]; P = 0.03) as well as age, sex, IPSS-R, and CK were independent predictors of OS. In the IPSS-R high and very high risk subgroup (n = 260), translocations remained independently associated with OS (HR 1.68 [1.06–2.69], P = 0.03) whereas HMA treatment was not associated with improved survival (median OS, 20.9 versus 21.2 months, P = 0.43). However, translocation carriers exhibited enhanced survival following HMA treatment (median 2.1 versus 12.4 months, P = 0.03). Our data suggest that chromosomal translocation is an independent predictor of adverse outcome and has an additional prognostic value in discriminating patients with MDS having higher risk IPSS-R who could benefit from HMA treatment.  相似文献   
15.
The amount of sample available for clinical and biological proteomic research is often limited and thus significantly restricts clinical and translational research. Recently, we have integrated pressure cycling technology (PCT) assisted sample preparation and SWATH‐MS to perform reproducible proteomic quantification of biopsy‐level tissue samples. Here, we further evaluated the minimal sample requirement of the PCT‐SWATH method using various types of samples, including cultured cells (HeLa, K562, and U251, 500 000 to 50 000 cells) and tissue samples (mouse liver, heart, brain, and human kidney, 3–0.2 mg). The data show that as few as 50 000 human cells and 0.2–0.5 mg of wet mouse and human tissues produced peptide samples sufficient for multiple SWATH‐MS analyses at optimal sample load applied to the system. Generally, the reproducibility of the method increased with decreasing tissue sample amounts. The SWATH maps acquired from peptides derived from samples of varying sizes were essentially identical based on the number, type, and quantity of identified peptides. In conclusion, we determined the minimal sample required for optimal PCT‐SWATH analyses, and found smaller sample size achieved higher quantitative accuracy.  相似文献   
16.
The purpose of this study was to determine what levels of starch or glucose replacement for fructose in the copper-deficient diet (copper) can minimize the fructose-copper interaction. Experimental diets contained either 100% fructose as the carbohydrate source, or the fructose was partially replaced with 50% starch, 50% glucose, 75% starch, or 75% glucose. Diets were either copper adequate (7-8 ppm) or inadequate (less than 1 ppm). Male weanling rats were fed their respective diet for 5 weeks and then fasted overnight. After decapitation, blood was collected and liver and heart were removed. Plasma copper was significantly reduced and ceruloplasmin was not detected in all copper-deficient groups. Copper deficiency increased plasma cholesterol, as well as heart and liver weight in the glucose groups, but not in the starch groups. Those organ weights were heavier in glucose-copper than starch-copper rats. Erythrocyte copper-zinc-superoxide dismutase activity was greater in starch-copper rats. Erythrocyte copper-zinc-superoxide dismutase activity was greater in starch-copper than glucose-copper rats regardless of carbohydrate amount. Hepatic copper concentration of the group fed starch-copper was twice levels observed in glucose-copper. The 50% glucose rats had lower hepatic copper than the 75% glucose rats. Hepatic copper-zinc-superoxide dismutase activity showed patterns similar to hepatic copper. Cardiac copper was greater in starch-copper than glucose-copper rats. Cardiac copper-zinc-superoxide dismutase activity was equally reduced in all copper-deficient groups. The 50% starch-replaced diet was more effective in minimizing copper deficiency than the 75% glucose-replaced diet. This poorer improvement of copper deficiency by glucose than starch may partially be due to a more severe reduction of food intake in glucose than in starch diets.  相似文献   
17.
An all solid state potentiometric immunosensor (ASPI) has been developed to study the activation process of neuronal nitric oxide synthase (nNOS), the enzyme involved in the synthesis of nitric oxide generated under physiological conditions. At first, an all solid state H+-selective ISE was fabricated with the carboxylated poly(vinyl chloride) (PVC-COOH) film containing H+ ionophore, antibody was then immobilized on the polymer layer. The immunocomplex formation was detected by monitoring pH change due to interaction between urease labeled secondary antibody and antigen. Experimental parameters such as the amount of phosphorylated nNOS immobilized on the electrode surface and pH responses due to the antibody–antigen reaction were studied in detail. The calibration plot of the potentiometric potential vs. phosphorylated nNOS concentration exhibited a linear relationship in the range of 3.4–340.0 μg/ml. The calibration sensitivity of the phosphorylated nNOS immunosensor was −0.073 ± 0.002 mV/μg ml−1. The detection limit of nNOS was determined to be 0.2 μg/ml based on five-time measurements (95% confidence level, k = 3, n = 5). The reliability of the immunosensor was examined with rat brain tissues as well as neuronal cells, and the results shown were good, implying a promising approach for a novel electrochemical immunosensor platform with potential applications to clinical diagnosis.  相似文献   
18.
Cephalosporium acremonium was cultivated in fermentation medium containing sucrose or methyl oleate as a carbon source for cephalosporin C production. The level of antibiotic production was 48 g of cephalosporin C per liter under optimum conditions when methyl oleate was used. The C18:1 (oleic acid) methyl ester appeared to be utilized faster than the C18:2 (linoleic acid) methyl ester in fermentation broth. Physiological characteristics of C. acremonium were investigated by determining the fatty acid composition of the total cellular free lipid. Significant changes in cellular fatty acid composition occurred during inoculum cultivation and fermentation. The percentage of C18:1 increased from 19.1 to 38.5%, but the percentage of C18:2 decreased from 56.7 to 36.1%, and there was an increase in pH during inoculum cultivation. The cellular fatty acid composition of C. acremonium grown in fermentation medium containing methyl oleate (methyl oleate medium) was significantly different from that in fermentation medium containing sucrose (sucrose medium). The major fatty acids detected were C16:0 (palmitic acid), C18:1, and C18:2. In methyl oleate medium, the ratio of C18:1 to C18:2 increased from 0.34 to 1.37, while the cell morphology changed from hyphae to arthrospores and conidia. In contrast, in sucrose medium, the ratio of C18:1 to C18:2 decreased from 0.70 to 0.43, and most of the cells remained hyphal at the end of fermentation. We observed that hyphae contained a higher proportion of C18:2 but arthrospores and conidia contained a higher proportion of C18:1.  相似文献   
19.
Spider webs are made of silk, the properties of which ensure remarkable efficiency at capturing prey. However, remaining on, or near, the web exposes the resident spiders to many potential predators, such as ants. Surprisingly, ants are rarely reported foraging on the webs of orb-weaving spiders, despite the formidable capacity of ants to subdue prey and repel enemies, the diversity and abundance of orb-web spiders, and the nutritional value of the web and resident spider. We explain this paradox by reporting a novel property of the silk produced by the orb-web spider Nephila antipodiana (Walckenaer). These spiders deposit on the silk a pyrrolidine alkaloid (2-pyrrolidinone) that provides protection from ant invasion. Furthermore, the ontogenetic change in the production of 2-pyrrolidinone suggests that this compound represents an adaptive response to the threat of natural enemies, rather than a simple by-product of silk synthesis: while 2-pyrrolidinone occurs on the silk threads produced by adult and large juvenile spiders, it is absent on threads produced by small juvenile spiders, whose threads are sufficiently thin to be inaccessible to ants.  相似文献   
20.
Protein glycosylation is a critical subject attracting increasing attention in the field of proteomics as it is expected to play a key role in the investigation of histological and diagnostic biomarkers. In this context, an enormous number of glycoproteins have now been nominated as disease-related biomarkers. However, there is no appropriate strategy in the current proteome platform to qualify such marker candidate molecules, which relates their specific expression to particular diseases. Here, we present a new practical system for focused differential glycan analysis in terms of antibody-assisted lectin profiling (ALP). In the developed procedure, (i) a target protein is enriched from clinic samples (e.g. tissue extracts, cell supernatants, or sera) by immunoprecipitation with a specific antibody recognizing a core protein moiety; (ii) the target glycoprotein is quantified by immunoblotting using the same antibody used in (i); and (iii) glycosylation difference is analyzed by means of antibody-overlay lectin microarray, an application technique of an emerging glycan profiling microarray. As model glycoproteins having either N-linked or O-linked glycans, prostate-specific antigen or podoplanin, respectively, were subjected to systematic ALP analysis. As a result, specific signals corresponding to the target glycoprotein glycans were obtained at a sub-picomole level with the aid of specific antibodies, whereby disease-specific or tissue-specific glycosylation changes could be observed in a rapid, reproducible, and high-throughput manner. Thus, the established system should provide a powerful pipeline in support of on-going efforts in glyco-biomarker discovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号