首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39718篇
  免费   3077篇
  国内免费   2927篇
  45722篇
  2024年   98篇
  2023年   517篇
  2022年   1183篇
  2021年   2171篇
  2020年   1365篇
  2019年   1739篇
  2018年   1746篇
  2017年   1196篇
  2016年   1660篇
  2015年   2455篇
  2014年   2879篇
  2013年   3109篇
  2012年   3646篇
  2011年   3211篇
  2010年   2031篇
  2009年   1656篇
  2008年   2014篇
  2007年   1755篇
  2006年   1619篇
  2005年   1320篇
  2004年   1084篇
  2003年   935篇
  2002年   794篇
  2001年   684篇
  2000年   605篇
  1999年   645篇
  1998年   357篇
  1997年   367篇
  1996年   350篇
  1995年   324篇
  1994年   338篇
  1993年   271篇
  1992年   315篇
  1991年   247篇
  1990年   221篇
  1989年   195篇
  1988年   131篇
  1987年   104篇
  1986年   97篇
  1985年   88篇
  1984年   63篇
  1983年   54篇
  1982年   35篇
  1981年   11篇
  1980年   9篇
  1979年   13篇
  1971年   3篇
  1970年   2篇
  1965年   1篇
  1962年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Recent studies have demonstrated a marked decrease in peripheral lymphocyte levels in patients with coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Few studies have focused on the changes of NK, T‐ and B‐cell subsets, inflammatory cytokines and virus‐specific antibodies in patients with moderate COVID‐19. A total of 11 RT‐PCR‐confirmed convalescent patients with COVID‐19 and 11 patients with non‐SARS‐CoV‐2 pneumonia (control patients) were enrolled in this study. NK, CD8+ T, CD4+ T, Tfh‐like and B‐cell subsets were analysed using flow cytometry. Cytokines and SARS‐CoV‐2‐specific antibodies were analysed using an electrochemiluminescence immunoassay. NK cell counts were significantly higher in patients with COVID‐19 than in control patients (P = 0.017). Effector memory CD8+ T‐cell counts significantly increased in patients with COVID‐19 during a convalescent period of 1 week (P = 0.041). TIM‐3+ Tfh‐like cell and CD226+ Tfh‐like cell counts significantly increased (P = 0.027) and decreased (P = 0.022), respectively, during the same period. Moreover, ICOS+ Tfh‐like cell counts tended to decrease (P = 0.074). No abnormal increase in cytokine levels was observed. The high expression of NK cells is important in innate immune response against SARS‐CoV‐2. The increase in effector memory CD8+ T‐cell counts, the up‐regulation of inhibitory molecules and the down‐regulation of active molecules on CD4+ T cells and Tfh‐like cells in patients with COVID‐19 would benefit the maintenance of balanced cellular and humoural immune responses, may prevent the development of severe cases and contribute to the recovery of patients with COVID‐19.  相似文献   
992.
Pancreatic cancer (PC) is a leading cause of cancer‐related mortality globally. Though increasing evidence has demonstrated that circular RNAs (circRNAs) are linked to the development and progression of cancers, the biological functions of circRNAs in PC remain largely unexplored so far. Based on previous studies, Hsc_circ_0075829 (circ_0075829) was screened out and then further identified in PC clinical specimens and cell lines by real‐time PCR. After the stability tests, a series of in vitro and in vivo functional experiments were performed to investigate the role of circ_0075829 in PC development. Furthermore, fluorescent in situ hybridization (FISH), bioinformatics tools, dual‐luciferase assays and rescue experiments were conducted to clarify the regulatory mechanisms of circ_0075829 in SW1990 and BxPC‐3 cells. Compared with paracancerous tissues, the expression of circ_0075829 was increased in PC tissues, which was positively correlated with the clinical features of PC. Knockdown of circ_0075829 significantly suppressed the proliferative, migratory and invasive rates of SW1990 and BxPC‐3 cells both in vitro and in vivo. Bioinformatics analysis and dual‐luciferase reporter gene assay indicated that circ_0075829 could bind to miR‐1287‐5p. Mechanism research and rescue experiments demonstrated that circ_0075829 could regulate the LAMTOR3/p‐ERK signalling pathway via sponging miR‐1287‐5p in PC cell lines. Our data reveal that the circ_0075829 could facilitate the proliferation and metastasis of PC through circ_0075829/miR‐1287‐5p/LAMTOR3 axis.  相似文献   
993.
Developing effective and eco‐friendly antimicrobials and pesticides has become a highly important issue. The repellent, insecticidal and antimicrobial activity of essential oils (EOs) isolated by hydrodistillation from dried leaves of the three Eucalyptus species (E. cloeziana, E. umbellata and E. benthamii) were investigated. During GC/MS analysis, α‐pinene (47.36 %), 1,8‐cineol (38.53 %) and α‐pinene (35.31 %) were identified as major components of E. cloeziana, E. umbellata and E. benthamii, respectively. The EOs from E. cloeziana exhibited the longest effective protection time (465 min, at 50.0 % w/w) for humans among the EOs studied. The effective protection time was 30 min and 300 min at concentrations of 12.5 % (w/w) and 25.0 % (w/w), respectively. Fumigating insecticidal activity of EOs from three Eucalyptus species was tested by airtight fumigation in conical flask, which indicated that essential oils had a highly and rapidly insecticidal activity on Culex pipiens quinquefasciatus. The antimicrobial activity of EOs was evaluated by using disc diffusion and agar dilution methods. There was no significant difference in the antibacterial activity of EOs from E. cloeziana and E. umbellate and they had the same MICs (20 mL/L) on Staphylococcus aureus, Salmonella typhi, Bacillus subtilis and Escherichia coli. E. benthamii had the worst microbial inhibitory effect among the three Eucalyptus essential oils and the MIC value for the test species is 40 mL/L except for Rhodotorula Harrison (10 mL/L).  相似文献   
994.
Anthocyanins (AC) from Coreopsis tinctoria possesses strong antioxidant properties, while the effects of AC on cells damage induced by reactive oxygen species (ROS) in diabetes mellitus diseases progression have not been reported. The present study was carried out to evaluate the protective property of AC against cellular oxidative stress with an experimental model, H2O2‐exposed MIN6 cells. AC could reverse the decrease of cell viability induced by H2O2 and efficiently suppressed cellular ROS production and cell apoptosis. In addition, Real‐time PCR and Western blot analyses indicated that AC could protect MIN6 cells against oxidative injury through increasing the translocation of Nrf2 into nuclear, decreasing the phosphorylation level of p38 and up‐regulating the protein expression of antioxidant enzyme (SOD1, SOD2 and CAT). Thus, this study provides evidence to support the beneficial effect of AC in inhibiting MIN6 cells from H2O2‐induced oxidative injury.  相似文献   
995.
The role of exosomes derived from endothelial cells (ECs) in the progression of atherosclerosis (AS) and inflammation remains largely unexplored. We aimed to investigate whether exosome derived from CD137‐modified ECs (CD137‐Exo) played a major role in AS and to elucidate the potential mechanism underlying the inflammatory effect. Exosomes derived from mouse brain microvascular ECs treated with agonist anti‐CD137 antibody were used to explore the effect of CD137 signalling in AS and inflammation in vitro and vivo. CD137‐Exo efficiently induced the progression of AS in ApoE?/? mice. CD137‐Exo increased the proportion of Th17 cells both in vitro and vivo. The IL‐6 contained in CD137‐Exo which is regulated by Akt and NF‐КB pathway was verified to activate Th17 cell differentiation. IL‐17 increased apoptosis, inhibited cell viability and improved lactate dehydrogenase (LDH) release in ECs subjected to inflammation induced by lipopolysaccharide (LPS). The expression of soluble intercellular adhesion molecule1 (sICAM‐1), monocyte chemoattractant protein‐1 (MCP‐1) and E‐selectin in the supernatants of ECs after IL‐17 treatment was dramatically increased. CD137‐Exo promoted the progression of AS and Th17 cell differentiation via NF‐КB pathway mediated IL‐6 expression. This finding provided a potential method to prevent local and peripheral inflammation in AS.  相似文献   
996.
Patients with diabetes have an increased risk of vascular complications. Suv39h1, a histone methyltransferase, plays a protective role against myocardial injury in diabetes. Herein, we intend to explore whether Suv39h1 could affect neointimal formation after vascular injury in diabetic rats and reveal the underlying mechanism. In this study, we generated adenovirus expressing Suv39h1 as well as lentivirus expressing Suv39h1‐targeting shRNA and evaluated the significance of Suv39h1 in vascular smooth muscle cells (VSMCs) under diabetic conditions. In vitro, we examined proliferative and migratory behaviours as well as the underlying signalling mechanisms in VSMCs in response to high glucose treatment. In vivo, we induced diabetes in SD rats with streptozocin and established the common carotid artery balloon injury model. Suv39h1 was found to be both necessary and sufficient to promote VSMC proliferation and migration under high glucose conditions. We observed corresponding changes in intracellular signalling molecules including complement C3 and phosphor‐ERK1/2. However, either up‐regulating or down‐regulating Suv39h1, phosphor‐p38 level was not significantly affected. Consistently, Suv39h1 overexpression led to accelerated neointima formation, while knocking down Suv39h1 reduced it following carotid artery injury in diabetic rats. Using microarray analyses, we showed that altering the Suv39h1 level in vivo dramatically altered the expression of myriad genes mediating different biological processes and molecular function. This study reveals the novel role of Suv39h1 in VSMCs of diabetes and suggests its potential role as a therapeutic target in diabetic vascular injury.  相似文献   
997.
To explore how alterations in the phosphodiesterase type 5 (PDE5) signalling pathway and oxidative stress correlate with changes in the expression of relaxation and contraction molecules and erectile dysfunction (ED) in the corpus cavernosum smooth muscle (CCSM) of spontaneously hypertensive rats (SHR). In this study, SHR and Wistar‐Kyoto (WKY) rats were used. Erectile function was determined by apomorphine test and electrical stimulation (ES) of cavernous nerve. Masson''s trichrome staining and confocal microscopy were performed. Nitric oxide synthase (NOS), PDE5, phosphorylated‐PDE5 and α1‐adrenergic receptor (α1AR) were determined by RT‐PCR and Western blotting while oxidative stress in CC was determined by colorimetric analysis. SHR exhibited obvious ED. CC of SHR showed less SM but more collagen fibres. The expression of NOS isoforms in SHR was significantly decreased while all α1AR isoforms were increased. In addition, PDE5 and phosphorylated‐PDE5 were down‐regulated and its activity attenuated in the hypertensive rats. Meanwhile, the SHR group suffered oxidative stress, which may be modulated by endoplasmic reticulum stress and NADPH oxidase up‐regulation. Dysregulation of NOS and α1AR, histological changes and oxidative stress in CC may be associated with the pathophysiology of hypertension‐induced ED. In addition, PDE5 down‐regulation may lead to the decreased efficacy of PDE5 inhibitors in some hypertensive ED patients and treatment of oxidative stress could be used as a new therapeutic target for this type of ED.  相似文献   
998.
METTL3 is an important regulatory molecule in the process of RNA biosynthesis. It mainly regulates mRNA translation, alternative splicing and microRNA maturation by mediating m6A‐dependent methylation. Interleukin 1β (IL‐1β) is an important inducer of cartilage degeneration that can induce an inflammatory cascade reaction in chondrocytes and inhibit the normal biological function of cells. However, it is unclear whether IL‐1β is related to METTL3 expression or plays a regulatory role in endplate cartilage degeneration. In this study, we found that the expression level of METTL3 and methylation level of m6A in human endplate cartilage with different degrees of degeneration were significantly different, indicating that the methylation modification of m6A mediated by METTL3 was closely related to the degeneration of human endplate cartilage. Next, through a series of functional experiments, we found that miR‐126‐5p can play a significant role in IL‐1β–induced degeneration of endplate chondrocytes. Moreover, we found that miR‐126‐5p can inhibit the PI3K/Akt signalling pathway by targeting PIK3R2 gene, leading to the disorder of cell vitality and functional metabolism. To further determine whether METTL3 could regulate miR‐126‐5p maturation, we first confirmed that METTL3 can bind the key protein underlying pri‐miRNA processing, DGCR8. Additionally, when METTL3 expression was inhibited, the miR‐126‐5p maturation process was blocked. Therefore, we hypothesized that METTL3 can promote cleavage of pri‐miR‐126‐5p and form mature miR‐126‐5p by combining with DGCR8.  相似文献   
999.
Osteolytic skeletal disorders are caused by an imbalance in the osteoclast and osteoblast function. Suppressing the differentiation and resorptive function of osteoclast is a key strategy for treating osteolytic diseases. Dracorhodin perchlorate (D.P), an active component from dragon blood resin, has been used for facilitating wound healing and anti-cancer treatments. In this study, we determined the effect of D.P on osteoclast differentiation and function. We have found that D.P inhibited RANKL-induced osteoclast formation and resorbed pits of hydroxyapatite-coated plate in a dose-dependent manner. D.P also disrupted the formation of intact actin-rich podosome structures in mature osteoclasts and inhibited osteoclast-specific gene and protein expressions. Further, D.P was able to suppress RANKL-activated JNK, NF-κB and Ca2+ signalling pathways and reduces the expression level of NFATc1 as well as the nucleus translocation of NFATc1. Overall, these results indicated a potential therapeutic effect of D.P on osteoclast-related conditions.  相似文献   
1000.
In this study, a homogenous polysaccharide (FSP), with an average molecular weight of 9.08 × 104 Da, was isolated from Forsythia suspense and its antibacterial potential against Enterobacter cloacae producing SHV‐12 ESBL was investigated. Growth kinetics, in vitro competition and biofilm formation experiments demonstrated that SHV‐12 ESBL contributed to a fitness benefit to E cloacae strain. The antibacterial activity of FSP (2.5, 5.0 and 10.0 μg/mL) was tested against E cloacae bearing SHV‐12 ESBL gene using bacterial sensitivity, agar bioassay and agar well diffusion assays. It was found that the addition of FSP demonstrated potent antibacterial activities against this bacterial as showed by the decrease of bacterial growth and the increase of the inhibition zone diameter. Furthermore, SHV‐12 ESBL gene expression was decreased in E cloacae strain following different FSP treatment in a concentration‐dependent manner. In conclusion, these data showed that FSP exhibited potent good antibacterial activity against E cloacae producing SHV‐12 ESBL via inhibition of SHV‐12 ESBL gene expression, which may promote the development of novel natural antibacterial agents to treat infections caused by this drug‐resistant bacterial pathogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号