首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11455篇
  免费   892篇
  国内免费   634篇
  12981篇
  2024年   21篇
  2023年   142篇
  2022年   286篇
  2021年   450篇
  2020年   302篇
  2019年   373篇
  2018年   384篇
  2017年   314篇
  2016年   501篇
  2015年   687篇
  2014年   800篇
  2013年   864篇
  2012年   1056篇
  2011年   956篇
  2010年   606篇
  2009年   532篇
  2008年   629篇
  2007年   578篇
  2006年   496篇
  2005年   451篇
  2004年   393篇
  2003年   373篇
  2002年   351篇
  2001年   158篇
  2000年   153篇
  1999年   133篇
  1998年   91篇
  1997年   86篇
  1996年   72篇
  1995年   64篇
  1994年   69篇
  1993年   57篇
  1992年   66篇
  1991年   60篇
  1990年   59篇
  1989年   43篇
  1988年   30篇
  1987年   21篇
  1986年   37篇
  1985年   24篇
  1984年   33篇
  1983年   11篇
  1982年   15篇
  1981年   15篇
  1980年   13篇
  1979年   10篇
  1977年   12篇
  1976年   11篇
  1975年   12篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
N6-methyladenosine (m6A) is a dynamic and reversible RNA modification that has emerged as a crucial player in the life cycle of RNA, thus playing a pivotal role in various biological processes. In recent years, the potential involvement of RNA m6A modification in aging and age-related diseases has gained increasing attention, making it a promising target for understanding the molecular mechanisms underlying aging and developing new therapeutic strategies. This Perspective article will summarize the current advances in aging-related m6A regulation, highlighting the most significant findings and their implications for our understanding of cellular senescence and aging, and the potential for targeting RNA m6A regulation as a therapeutic strategy. We will also discuss the limitations and challenges in this field and provide insights into future research directions. By providing a comprehensive overview of the current state of the field, this Perspective article aims to facilitate further advances in our understanding of the molecular mechanisms underlying aging and to identify new therapeutic targets for aging-related diseases.  相似文献   
62.
PtdIns and PtdInsP kinases from normal erythrocyte (AA) membranes and sickle cell anaemia erythrocyte (SS) membranes have been characterized. PtdIns kinase was studied in native membranes under conditions in which PtdInsP kinase and PtdInsP phosphatase do not express any activity. Kinetic analysis of the AA and SS PtdIns kinases indicate similar Km values for PtdIns and ATP but higher Vmax values for SS PtdIns kinase. PtdInsP kinase was partially purified from erythrocyte ghosts by NaCl extraction. The kinetic parameters of PtdInsP kinase determined under these conditions were similar in AA and SS NaCl extracts. These data suggest the presence of some effector of PtdIns kinase in SS cell membranes, resulting in a greater activity of the enzyme. This leads consequently, to increase the PtdInsP pool and to activate PtdInsP kinase, in agreement with our previous observations of a greater [32P]Pi incorporation in both polyphosphoinositides in SS cells relatively to AA cells.  相似文献   
63.
Using both chromosomal in situ hybridization and molecular techniques, we report the genetic localization of the gene coding for the alpha 1 subunit of the skeletal slow Ca2+ current channel/DHP receptor gene (Cchl1a3) on human Chromosome (Chr) 1 (1q31–1q32 region) and on mouse Chr 1 region (F-G). On the basis of single-strand conformation polymorphism (SSCP-PCR) analysis in an interspecific backcross, we have determined that the Cchl1a3=mdg (muscular dysgenesis) locus is very closely linked to the myogenin (Myog) locus.  相似文献   
64.
The garnet-type phase Li7La3Zr2O12 (LLZO) attracts significant attention as an oxide solid electrolyte to enable safe and robust solid-state batteries (SSBs) with potentially high energy density. However, while significant progress has been made in demonstrating compatibility with Li metal, integrating LLZO into composite cathodes remains a challenge. The current perspective focuses on the critical issues that need to be addressed to achieve the ultimate goal of an all-solid-state LLZO-based battery that delivers safety, durability, and pack-level performance characteristics that are unobtainable with state-of-the-art Li-ion batteries. This perspective complements existing reviews of solid/solid interfaces with more emphasis on understanding numerous homo- and heteroionic interfaces in a pure oxide-based SSB and the various phenomena that accompany the evolution of the chemical, electrochemical, structural, morphological, and mechanical properties of those interfaces during processing and operation. Finally, the insights gained from a comprehensive literature survey of LLZO–cathode interfaces are used to guide efforts for the development of LLZO-based SSBs.  相似文献   
65.

The helix angle configuration of the myocardium is understood to contribute to the heart function, as finite element (FE) modeling of postnatal hearts showed that altered configurations affected cardiac function and biomechanics. However, similar investigations have not been done on the fetal heart. To address this, we performed image-based FE simulations of fetal left ventricles (LV) over a range of helix angle configurations, assuming a linear variation of helix angles from epicardium to endocardium. Results showed that helix angles have substantial influence on peak myofiber stress, cardiac stroke work, myocardial deformational burden, and spatial variability of myocardial strain. A good match between LV myocardial strains from FE simulations to those measured from 4D fetal echo images could only be obtained if the transmural variation of helix angle was generally between 110 and 130°, suggesting that this was the physiological range. Experimentally discovered helix angle configurations from the literature were found to produce high peak myofiber stress, high cardiac stroke work, and a low myocardial deformational burden, but did not coincide with configurations that would optimize these characteristics. This may suggest that the fetal development of myocyte orientations depends concurrently on several factors rather than a single factor. We further found that the shape, rather than the size of the LV, determined the manner at which helix angles influenced these characteristics, as this influence changed significantly when the LV shape was varied, but not when a heart was scaled from fetal to adult size while retaining the same shape. This may suggest that biomechanical optimality would be affected during diseases that altered the geometric shape of the LV.

  相似文献   
66.
67.
利用改进的kar交配法,将一个含有340kb人基因组DNA的YAC片段的供体酵母菌株YAC23与受体菌株YLB504进行交配,以选择平板对所形成的候选YAC导入菌进行筛选。经PCR分析,候选YAC导入菌在404bp处有一个扩增带,即具有受体菌株的交配型(MAT α)。进一步用脉冲电泳进行核型鉴定,证实YACs己成功地进入受体,实现了YACs从一个宿主到另一个宿主之间的转移。  相似文献   
68.
69.
大脑皮层信息传输和精神分裂症   总被引:22,自引:4,他引:18  
本工作用脑电图为测试手段,比较了正常人与精神分裂症病人的大脑皮层的信息传输。我们发现精神分裂病人的大脑皮层信息传输有非常特殊的现象。正常人在睁眼时大脑皮层信息传输比较活跃,当闭眼时信息传输相对减少。而精神分裂症病人则恰好相反。闭眼时信息传输很活跃而睁眼对它们产生抑制,严重的情况可与正常人深度睡眠时类似。经过近三百多例的统计分析这种差别是非常显著的。我们认为这种方法可能作为诊断精神分裂症的客观指标。  相似文献   
70.
 The protooncogene protein, Bcl-2, protects cells from apoptosis and ensures their survival in vitro by inhibiting the action of the apoptosis-inducer, Bax. Its expression in proliferative and long-lived cells in vivo also indicates that it protects against cell death. The chondrocytes of the epiphyseal plate cartilage undergo a series of maturation steps and deposit mineral in the cartilage matrix before dying. The possibility that Bcl-2 helps protect chondrocytes until mineral deposition is completed was investigated by determining the distribution of Bcl-2 immunoreactivity in the epiphyseal plate cartilage of growing rats and its subcellular localization, using a specific antibody. The involvement of Bax in the triggering of chondrocyte death was checked by immunocytochemistry. Bcl-2 expression in the osteoblasts and the final result of their evolution, the osteocytes, was also examined in trabecular bone. Bcl-2 immunoreactivity was non-uniformly distributed throughout the epiphyseal cartilage. It was maximal in proliferative chondrocytes, decreased in mature chondrocytes, and low in hypertrophic chondrocytes, whereas there was Bax immunoreactivity in all chondrocytes examined. Immunolabeling was intense in osteoblasts but considerably lower in fully differentiated osteocytes. Bcl-2 immunoreactivity was mainly in the cytoplasm of chondrocytes, osteoblasts, and early osteocytes; the nuclei appeared clear. The subcellular distribution of Bcl-2 immunolabeling in chondrocytes, revealed by gold particles in the electron microscope, showed that gold particles were frequently concentrated in the mitochondria in all the cartilage zones and lay mainly within the organelles, not at their periphery. The endoplasmic reticulum contained moderate immunoreactivity and there were few gold particles in the cytoplasm and nuclei. The number of gold particles decreased in all the subcellular compartments from proliferative to hypertrophic chondrocytes. In contrast, Bax immunoreactivity changed little during chondrocyte terminal evolution, and its subcellular distribution mirrored that of Bcl-2. These immunocytochemical data indicate that Bcl-2 helps maintain chondrocytes and osteoblasts until their terminal maturation. Accepted: 19 February 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号