首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11459篇
  免费   893篇
  国内免费   629篇
  2024年   21篇
  2023年   142篇
  2022年   286篇
  2021年   450篇
  2020年   302篇
  2019年   373篇
  2018年   384篇
  2017年   314篇
  2016年   501篇
  2015年   687篇
  2014年   800篇
  2013年   864篇
  2012年   1056篇
  2011年   956篇
  2010年   606篇
  2009年   532篇
  2008年   629篇
  2007年   578篇
  2006年   496篇
  2005年   451篇
  2004年   393篇
  2003年   373篇
  2002年   351篇
  2001年   158篇
  2000年   153篇
  1999年   133篇
  1998年   91篇
  1997年   86篇
  1996年   72篇
  1995年   64篇
  1994年   69篇
  1993年   57篇
  1992年   66篇
  1991年   60篇
  1990年   59篇
  1989年   43篇
  1988年   30篇
  1987年   21篇
  1986年   37篇
  1985年   24篇
  1984年   33篇
  1983年   11篇
  1982年   15篇
  1981年   15篇
  1980年   13篇
  1979年   10篇
  1977年   12篇
  1976年   11篇
  1975年   12篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
211.
212.
Lipid droplets (LDs) are critical for lipid storage and energy metabolism. LDs form in the endoplasmic reticulum (ER). However, the molecular basis for LD biogenesis remains elusive. Here, we show that fat storage–inducing transmembrane protein 2 (FIT2) interacts with ER tubule-forming proteins Rtn4 and REEP5. The association is mainly transmembrane domain based and stimulated by oleic acid. Depletion of ER tubule-forming proteins decreases the number and size of LDs in cells and Caenorhabditis elegans, mimicking loss of FIT2. Through cytosolic loops, FIT2 binds to cytoskeletal protein septin 7, an interaction that is also required for normal LD biogenesis. Depletion of ER tubule-forming proteins or septins delays nascent LD formation. In addition, FIT2-interacting proteins are up-regulated during adipocyte differentiation, and ER tubule-forming proteins, septin 7, and FIT2 are transiently enriched at LD formation sites. Thus, FIT2-mediated nascent LD biogenesis is facilitated by ER tubule-forming proteins and septins.  相似文献   
213.
214.
Menispermaceae is one of the core groups of Ranunculales. The single fertile ovule in each ovary in Menispermaceae varies greatly in integument number, micropyle formation, and integument lobe. However, data regarding ovule morphogenesis in the family are very limited. In this study, we document ovule development of selected species in the Menispermaceae using scanning electron microscopy and light microscopy. Ovule development in Menispermaceae shows the following characteristics. Two ovules are initiated in a young carpel, one of them degenerates gradually and the other develops into a fertile ovule in subsequent stages. Bitegmic in Sinomenium Diels. and Cocculus DC. and unitegmic in Stephania Lour. The formation of unitegmy is probably due to integumentary shifting. The annularly initiated inner integument is of dermal origin and has 2–3 cell layers in the family, but the semi-annularly initiated outer integument is of both dermal and subdermal origin. Both inner and outer integument are cup-shaped at maturity. The cup-shaped outer integument is formed due to the outer integument's extension to the concave (adaxial) side of the funiculus. The obturator is well developed and consists of 2–3 cell layers in Cocculus or 9–11 cell layers in Stephania. Ovule development of Menispermaceae suggests some common characteristics between Cocculus and Sinomenium, and derived unitegmy supports molecular data that indicate Stephania is one of the late-diverging lineages in the family. Integument lobations are present. The sterile ovule shows variations in the degeneration process. These results will provide evidence for exploring the evolution of ovules in Ranunculales.  相似文献   
215.
Grain size is determined by the size and number of cells in the grain. The regulation of grain size is crucial for improving crop yield; however, the genes and molecular mechanisms that control grain size remain elusive. Here, we report that a member of the detoxification efflux carrier /Multidrug and Toxic Compound Extrusion (DTX/MATE) family transporters, BIG RICE GRAIN 1 (BIRG1), negatively influences grain size in rice (Oryza sativa L.). BIRG1 is highly expressed in reproductive organs and roots. In birg1 grain, the outer parenchyma layer cells of spikelet hulls are larger than in wild-type (WT) grains, but the cell number is unaltered. When expressed in Xenopus laevis oocytes, BIRG1 exhibits chloride efflux activity. Consistent with this role of BIRG1, the birg1 mutant shows reduced tolerance to salt stress at a toxic chloride level. Moreover, grains from birg1 plants contain a higher level of chloride than those of WT plants when grown under normal paddy field conditions, and the roots of birg1 accumulate more chloride than those of WT under saline conditions. Collectively, the data suggest that BIRG1 in rice functions as a chloride efflux transporter that is involved in mediating grain size and salt tolerance by controlling chloride homeostasis.  相似文献   
216.
Photosystem I (PSI) is one of the two photosystems in photosynthesis, and performs a series of electron transfer reactions leading to the reduction of ferredoxin. In higher plants, PSI is surrounded by four light-harvesting complex I (LHCI) subunits, which harvest and transfer energy efficiently to the PSI core. The crystal structure of PSI-LHCI supercomplex has been analyzed up to 2.6 Å resolution, providing much information on the arrangement of proteins and cofactors in this complicated supercomplex. Here we have optimized crystallization conditions, and analyzed the crystal structure of PSI-LHCI at 2.4 Å resolution. Our structure showed some shift of the LHCI, especially the Lhca4 subunit, away from the PSI core, suggesting the indirect connection and inefficiency of energy transfer from this Lhca subunit to the PSI core. We identified five new lipids in the structure, most of them are located in the gap region between the Lhca subunits and the PSI core. These lipid molecules may play important roles in binding of the Lhca subunits to the core, as well as in the assembly of the supercomplex. The present results thus provide novel information for the elucidation of the mechanisms for the light-energy harvesting, transfer and assembly of this supercomplex.  相似文献   
217.
Dear Editor, A series of studies had focused on the ecological stability of human microbiome (Lozupone et al.,2012;Faith et al.,2013;Moya and Ferrer,2016).Despite the continuous perturbation and the highly personalized composition within the human microbiome (Human Microbiome Project,2012),healthy adults stably maintain their microbial communities in terms of space and time (Faith et al.,2013;Moya and Ferrer,2016;Oh et al.,2016).This stability is proved to be critical for the well-being of human body (Lozupone et al.,2012).On the contrary,major shifts in microbial community composition are often related to diseases (Lynch and Pedersen,2016).  相似文献   
218.

As the most important construction features of ancient Chinese cities, the city walls nowadays have lost their function of enemy defense and turned to affect the urban structure and development. To clarify the impact of ancient city walls on modern urban development, this work was conducted to measure the differences of landscape types and levels between the inner and outer walls of three typical ancient Chinese cities with the help of geoinformatics materials and landscape ecology indices. The results of this research proved that city walls have great impact on landscape pattern. Specifically, the aggregation, fragmentation, diversity and evenness of landscape were strongly affected by well-preserved ancient city walls. By sorting out and consulting historical documents and China's “City Walls Protection Regulations”, we also found that city walls help the old city to retain its original style and design characteristics. The findings of this quantitative-analysis-based historical study can provide a theoretical basis for the protection of historical heritage and landscape design.

  相似文献   
219.
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号