首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   23篇
  446篇
  2024年   1篇
  2022年   12篇
  2021年   3篇
  2020年   16篇
  2019年   6篇
  2018年   14篇
  2017年   14篇
  2016年   11篇
  2015年   18篇
  2014年   31篇
  2013年   39篇
  2012年   34篇
  2011年   34篇
  2010年   33篇
  2009年   12篇
  2008年   17篇
  2007年   20篇
  2006年   11篇
  2005年   18篇
  2004年   10篇
  2003年   11篇
  2002年   8篇
  2001年   5篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   4篇
  1977年   1篇
  1976年   2篇
  1969年   1篇
  1965年   1篇
  1955年   1篇
  1951年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有446条查询结果,搜索用时 15 毫秒
441.
442.
The formation of neuronal networks, during development and regeneration, requires outgrowth of axons along reproducible paths toward their appropriate postsynaptic target cells. Axonal extension occurs at growth cones (GCs) at the tips of axons. GC advance and navigation requires the activity of their cytoskeletal networks, comprising filamentous actin (F‐actin) in lamellipodia and filopodia as well as dynamic microtubules (MTs) emanating from bundles of the axonal core. The molecular mechanisms governing these two cytoskeletal networks, their cross‐talk, and their response to extracellular signaling cues are only partially understood, hindering our conceptual understanding of how regulated changes in GC behavior are controlled. Here, we introduce Drosophila GCs as a suitable model to address these mechanisms. Morphological and cytoskeletal readouts of Drosophila GCs are similar to those of other models, including mammals, as demonstrated here for MT and F‐actin dynamics, axonal growth rates, filopodial structure and motility, organizational principles of MT networks, and subcellular marker localization. Therefore, we expect fundamental insights gained in Drosophila to be translatable into vertebrate biology. The advantage of the Drosophila model over others is its enormous amenability to combinatorial genetics as a powerful strategy to address the complexity of regulatory networks governing axonal growth. Thus, using pharmacological and genetic manipulations, we demonstrate a role of the actin cytoskeleton in a specific form of MT organization (loop formation), known to regulate GC pausing behavior. We demonstrate these events to be mediated by the actin‐MT linking factor Short stop, thus identifying an essential molecular player in this context. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2010  相似文献   
443.
444.
445.
446.
The effect of mesterolone and intensive treadmill training (6 weeks, 5 days/week, means: 15.82 m/min and 45.8 min/day) in Achilles tendon remodeling was evaluated. Sedentary mice treated with mesterolone (Sed-M) or vehicle (Sed-C, placebo/control) and corresponding exercised (Ex-M and Ex-C) were examined. SDS-polyacrylamide gel electrophoresis was used for determining collagen bands and hydroxyproline concentration. Collagen fibril diameter, the area and number of fibrils contained in an area probe, and the ultrastructure of fibroblasts (tenocytes) were determined. The presence of collagen was notable in the tendons of all groups. Collagen α1/α2 bands in Sed-M, Ex-C, and Ex-M were higher than in Sed-C, as shown by hydroxyproline content, but collagen β-chain appeared only in Ex-C. Noticeable bands of non-collagenous proteins were found in Sed-M and Ex-M. The number of fibrils in the area probe increased markedly in Sed-M and Ex-C (12-fold), but their diameter and area were unchanged compared with Sed-C. In Ex-M, the fibril number decreased by three–fold to 3.5-fold compared with Sed-M and Ex-C, whereas diameter and area increased. Sed-C tenocytes appeared quiescent, whereas those in the other groups seemed to be engaged in protein synthesis. The density of tenocytes was smaller in Sed-C than in Ex-C, Sed-M, and Ex-M. Thus, mechanical stimuli and mesterolone alter the morphology of tenocytes and the composition of the tendon, probably through fibrillogenesis and/or increased intermolecular cross-links. The ergogenic effect is evidenced by the activation of collagenous and non-collagenous protein synthesis and the increase in the diameter and area of collagen fibrils. This study might be relevant to clinical sports medicine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号