首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   651篇
  免费   41篇
  国内免费   4篇
  696篇
  2023年   4篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   5篇
  2018年   12篇
  2017年   12篇
  2016年   19篇
  2015年   17篇
  2014年   39篇
  2013年   40篇
  2012年   44篇
  2011年   40篇
  2010年   35篇
  2009年   25篇
  2008年   31篇
  2007年   29篇
  2006年   20篇
  2005年   25篇
  2004年   17篇
  2003年   18篇
  2002年   18篇
  2001年   18篇
  2000年   14篇
  1999年   8篇
  1996年   4篇
  1994年   4篇
  1993年   6篇
  1992年   11篇
  1991年   11篇
  1990年   8篇
  1989年   4篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   13篇
  1984年   7篇
  1983年   6篇
  1981年   10篇
  1980年   11篇
  1979年   4篇
  1978年   6篇
  1977年   4篇
  1974年   5篇
  1973年   5篇
  1972年   6篇
  1971年   6篇
  1969年   4篇
  1967年   4篇
  1966年   4篇
排序方式: 共有696条查询结果,搜索用时 15 毫秒
141.
Drug delivery: an odyssey of 100 years   总被引:2,自引:0,他引:2  
Drug delivery has metamorphosed from the concept of a pill to molecular medicine in the past 100 years. Better appreciation and integration of pharmacokinetic and pharmacodynamic principles in design of drug delivery systems has led to improved therapeutic efficacy. A greater understanding of the molecular transport in relation to physico-chemical properties has led to the evolution of a biopharmaceutics classification system, which should be a future road map, governing drug design, development and delivery. While drugs belonging to class I and II will be delivered by established platform technologies, novel delivery strategies will evolve and mature to realize the potential of 'new generation' biotech and non biotech drugs belonging to class III and IV, respectively.  相似文献   
142.
Several microRNAs have been implicated in neurogenesis, neuronal differentiation, neurodevelopment, and memory. Development of miRNA-based therapeutics, however, needs tools for effective miRNA modulation, tissue-specific delivery, and in vivo evidence of functional effects following the knockdown of miRNA. Expression of miR-29a is reduced in patients and animal models of several neurodegenerative disorders, including Alzheimer''s disease, Huntington''s disease, and spinocerebellar ataxias. The temporal expression pattern of miR-29b during development also correlates with its protective role in neuronal survival. Here, we report the cellular and behavioral effect of in vivo, brain-specific knockdown of miR-29. We delivered specific anti-miRNAs to the mouse brain using a neurotropic peptide, thus overcoming the blood-brain-barrier and restricting the effect of knockdown to the neuronal cells. Large regions of the hippocampus and cerebellum showed massive cell death, reiterating the role of miR-29 in neuronal survival. The mice showed characteristic features of ataxia, including reduced step length. However, the apoptotic targets of miR-29, such as Puma, Bim, Bak, or Bace1, failed to show expected levels of up-regulation in mice, following knockdown of miR-29. In contrast, another miR-29 target, voltage-dependent anion channel1 (VDAC1), was found to be induced several fold in the hippocampus, cerebellum, and cortex of mice following miRNA knockdown. Partial restoration of apoptosis was achieved by down-regulation of VDAC1 in miR-29 knockdown cells. Our study suggests that regulation of VDAC1 expression by miR-29 is an important determinant of neuronal cell survival in the brain. Loss of miR-29 results in dysregulation of VDAC1, neuronal cell death, and an ataxic phenotype.  相似文献   
143.
144.
145.
The metacestode of Taenia solium persists for years in the human central nervous system. As proteolytic enzymes play an important role in the survival of tissues helminths, we examined extracts of T. solium metacestodes for proteolytic activity using 9 synthetic peptide substrates and 3 proteins (hemoglobin, albumin, and immunoglobulin G). The proteolytic enzymes were classified based on their inhibitor profiles. At neutral pH, aminopeptidase(arginine-7-amino-4-trifluoromethylcoumarin) and endopeptidase(benzyloxy-carbonyl-glycine-glycine-arginine-7-amino-4- trifluoromethylcoumarin) substrates were cleaved. Hydrolysis of both substrates was inhibited by chelating agents, which inhibit metalloproteases. Peak activity with both substrates eluted in gel filtration fractions corresponding to a molecular weight of about 104 kDa. Cysteine protease activity was identified, which cleaved benzyloxy-carbonyl-phenylalanine-arginine-7-amino- 4-trifluoromethylcoumarin (Z-Phe-Arg-AFC) and hemoglobin. Cleavage of Z-Phe-Arg-AFC was maximal at acid pH, was stimulated by thiols, and was inhibited by leupeptin and Ep459. Peak cysteine protease activity eluted in gel filtration fractions corresponding to a molecular weight of 32 kDa. Aspartic protease activity was identified by specific inhibition with pepstatin of acid digestion of hemoglobin and immunoglobulin G. Immunoglobulin digestion occurred at acid pH, with preferential degradation of the heavy chain. Upon gel filtration chromatography, the aspartic protease activity eluted as a broad peak with maximal activity at about 90 kDa. No serine protease activity was detected. None of the parasite enzymes digested albumin. Proteolytic enzymes of T. solium may be important for parasite survival in the intermediate host, by providing nutrients and digesting host immune molecules.  相似文献   
146.
147.
Older age and underlying conditions such as diabetes/obesity or immunosuppression are leading host risk factors for developing severe complications from COVID‐19 infection. The pathogenesis of COVID‐19‐related cytokine storm, tissue damage, and fibrosis may be interconnected with fundamental aging processes, including dysregulated immune responses and cellular senescence. Here, we examined effects of key cytokines linked to cellular senescence on expression of SARS‐CoV‐2 viral entry receptors. We found exposure of human umbilical vein endothelial cells (HUVECs) to the inflammatory cytokines, TNF‐α + IFN‐γ or a cocktail of TNF‐α + IFN‐γ + IL‐6, increased expression of ACE2/DPP4, accentuated the pro‐inflammatory senescence‐associated secretory phenotype (SASP), and decreased cellular proliferative capacity, consistent with progression towards a cellular senescence‐like state. IL‐6 by itself failed to induce substantial effects on viral entry receptors or SASP‐related genes, while synergy between TNF‐α and IFN‐γ initiated a positive feedback loop via hyper‐activation of the JAK/STAT1 pathway, causing SASP amplification. Breaking the interactive loop between senescence and cytokine secretion with JAK inhibitor ruxolitinib or antiviral drug remdesivir prevented hyper‐inflammation, normalized SARS‐CoV‐2 entry receptor expression, and restored HUVECs proliferative capacity. This loop appears to underlie cytokine‐mediated viral entry receptor activation and links with senescence and hyper‐inflammation.  相似文献   
148.
149.
With an insight that ligands possessing a N2S2 tetradentate array of donor atoms serve as ideal bifunctional chelating agents (BFCA) in the radiolabeling of target-specific agents, 5-hydroxy-3,7-diazanonan-1,9-dithiol (DAHPES) with a derivatizable substituent in the form of a hydroxyl group in the backbone was synthesized. The preparation of a steroid conjugate via coupling of this BFCA with testosterone-3-(O-carboxymethyl) oxime and the subsequent radiolabeling of the conjugate under optimized conditions with 99mTc, the ideal diagnostic radionuclide in nuclear medicine procedures, are reported. The immunoreactivity of the radiolabeled conjugate was demonstrated in a study using anti-testosterone antibodies, wherein the radiolabeled conjugate exhibited significant binding with antiserum to testosterone. Cell-uptake studies in DU145 prostate carcinoma cell line bearing androgen receptors (ARs) and comparison with AR non-bearing breast carcinoma cell line revealed the specific binding of the steroidal moiety with the testosterone receptor.  相似文献   
150.
Pillai BR  Mohanty J 《Cryobiology》2003,47(3):242-246
A new, safe, and rapid technique for the individual separation of the embryos of giant freshwater prawn Macrobrachium rosenbergii de Man is described. Two protease enzymes, e.g., trypsin and collagenase were used. Embryos in the advanced stage of development (gray embryos with eyespot and heart beat) were selected for the study. Treatment with collagenase and trypsin at respective concentrations of 0.05 and 0.25% for 30 min resulted in 100% separation of 35-40 mg of embryonic mass (approximately 180 embryos). A chelating agent, EDTA (ethylenediaminetetraacetic acid disodium salt: dihydrate) at 400 mg l(-1) enhanced the activity of trypsin. Trypsin and collagenase, when used together, were found to act synergistically. The separated embryos revealed no morphological injury when observed under the microscope. Further, in vitro hatching of the separated embryos was successful indicating that the present technique is safe and effective in achieving individual separation of prawn embryos.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号