首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   926篇
  免费   38篇
  国内免费   1篇
  2023年   4篇
  2022年   9篇
  2021年   20篇
  2020年   12篇
  2019年   14篇
  2018年   21篇
  2017年   15篇
  2016年   13篇
  2015年   34篇
  2014年   41篇
  2013年   66篇
  2012年   82篇
  2011年   78篇
  2010年   37篇
  2009年   34篇
  2008年   42篇
  2007年   59篇
  2006年   58篇
  2005年   41篇
  2004年   48篇
  2003年   38篇
  2002年   31篇
  2001年   7篇
  2000年   6篇
  1999年   6篇
  1998年   11篇
  1997年   5篇
  1996年   4篇
  1995年   10篇
  1994年   7篇
  1993年   5篇
  1991年   9篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1985年   4篇
  1984年   6篇
  1982年   3篇
  1981年   10篇
  1980年   7篇
  1979年   9篇
  1978年   6篇
  1977年   6篇
  1976年   5篇
  1973年   2篇
  1972年   2篇
  1967年   2篇
  1966年   2篇
  1965年   2篇
排序方式: 共有965条查询结果,搜索用时 15 毫秒
121.
Tannase from Penicillium variable IARI 2031 was purified by a two-step purification strategy comprising of ultra-filtration using 100 kDa molecular weight cutoff and gel-filtration using Sephadex G-200. A purification fold of 135 with 91% yield of tannase was obtained. The enzyme has temperature and pH optima of 50 degrees C and 5 degrees C, respectively. However, the functional temperature range is from 25 to 80 degrees C and functional pH range is from 3.0 to 8.0. This tannase could successfully be immobilized on Amberlite IR where it retains about 85% of the initial catalytic activity even after ninth cycle of its use. Based on the Michaelis-Menten constant (Km) of tannase, tannic acid is the best substrate with Km of 32 mM and Vmax of 1.11 micromol ml(-1)min(-1). Tannase is inhibited by phenyl methyl sulphonyl fluoride (PMSF) and N-ethylmaleimide retaining only 28.1% and 19% residual activity indicating that this enzyme belongs to the class of serine hydrolases. Tannase in both crude and crude lyophilized forms is stable for one year retaining more than 60% residual activity.  相似文献   
122.
We investigated 2,4-D-induced leaf senescence in young mustard seedlings. A set of morphometric, biochemical and molecular parameters were analyzed to characterize senescence markers. In accordance with earlier reports, chloroplast-membrane degradation marked the early phase of leaf senescence based on the analysis of the galactolipid fraction. Degradation of grana occurred earlier to that of the envelope, as revealed by the relative level of their specific galactolipids, namely, monogalactosyl diglyceride and digalactosyl diglyceride. Phospholipids showed extensive degradation resulting in the accumulation of lyso-derivatives of major phospholipids and phosphatidic acid (PA) in senescing leaves. Catalase activity was stimulated by 2,4-D and reflected scavenging of reactive oxygen species. Nuclear DNA degradation, a previously known death signal that represented a point of no return from progression of senescence, occurred late on the 4th day subsequent to 2,4-D supplementation. AgNO3, an inhibitor of ethylene biosynthesis, inhibited leaf senescence by ca. 54% based on PA content Involvement of 2,4-D, ethylene and abscisic acid in leaf senescence is discussed in relation to hormonal interplay.  相似文献   
123.
BACKGROUND: Filariasis and its consequences are a major health problem in tropical countries, including the Indian subcontinent. Despite its high incidence, it is unusual to find microfilaria in fine needle aspiration cytology (FNAC) smears. We present a case of subcutaneous firm to cystic swelling, aspiration of which revealed a large number of microfilaria. CASE: A 30-year-old man presented with a chain of intermittent, firm swellings in both arms. FNAC of the swellings revealed a large number of 4 microfilariae with associated giant cell reaction and inflammatory cell-like eosinophils. CONCLUSION: Besides the documented usual mode of presentation of filarial infection, it can present in an atypical manner, so careful examination of aspirates from the subcutaneous swellings, especially in filariasis endemic zones, is very important.  相似文献   
124.
Although essentially conserved, the N-terminal nucleotide-binding domain (NBD) of Cdr1p and other fungal transporters has some unique substitutions of amino acids which appear to have functional significance for the drug transporters. We have previously shown that the typical Cys193 in Walker A as well as Trp326 and Asp327 in the Walker B of N-terminal NBD (NBD-512) of Cdr1p has acquired unique roles in ATP binding and hydrolysis. In the present study, we show that due to spatial proximity, fluorescence resonance energy transfer (FRET) takes place between Trp326 of Walker B and MIANS [2-(4-maleimidoanilino) naphthalene-6-sulfonic acid] on Cys193 of Walker A motif. By exploiting FRET, we demonstrate how these critical amino acids are positioned within the nucleotide-binding pocket of NBD-512 to bind and hydrolyze ATP. Our results show that both Mg2+ coordination and nucleotide binding contribute to the formation of the active site. The entry of Mg2+ into the active site causes the first large conformational change that brings Trp326 and Cys193 in close proximity to each other. We also show that besides Trp326, typical Glu238 in the Q-loop also participates in coordination of Mg2+ by NBD-512. A second conformational change is induced when ATP, but not ADP, docks into the pocket. Asn328 does sensing of the γ-phosphate of the substrate in the extended Walker B motif, which is essential for the second conformational change that must necessarily precede ATP hydrolysis. Taken together our results imply that the uniquely placed residues in NBD-512 have acquired critical roles in ATP catalysis, which drives drug extrusion.  相似文献   
125.
126.
The breast and ovarian cancer suppressor protein BRCA2 controls the RAD51 recombinase in reactions that lead to homologous DNA recombination (HDR). BRCA2 binds RAD51 via eight conserved BRC repeat motifs of approximately 35 amino acids, each with a varying capacity to bind RAD51. BRC repeats both promote and inhibit RAD51 assembly on different DNA substrates to regulate HDR, but the structural basis for these functions is unclear. Here, we demarcate two tetrameric clusters of hydrophobic residues in the BRC repeats, interacting with distinct pockets in RAD51, and show that the co-location of both modules within a single BRC repeat is necessary for BRC–RAD51 binding and function. The two modules comprise the sequence FxxA, known to inhibit RAD51 assembly by blocking the oligomerization interface, and a previously unrecognized tetramer with the consensus sequence LFDE, which binds to a RAD51 pocket distinct from this interface. The LFDE motif is essential in BRC repeats for modes of RAD51 binding both permissive and inhibitory to RAD51 oligomerization. Targeted insertion of point mutations in RAD51 that disrupt the LFDE-binding pocket impair its assembly at DNA damage sites in living cells. Our findings suggest a model for the modular architecture of BRC repeats that provides fresh insight into the mechanisms regulating homologous DNA recombination.  相似文献   
127.
128.
129.
130.
The dentition of Cambaytherium was investigated in terms of dental wear, tooth replacement and enamel microstructure. The postcanine tooth row shows a significant wear gradient, with flattened premolars and anterior molars at a time when the last molars are only little worn. This wear gradient, which is more intensive in Cambaytherium thewissi than in Cambaytherium gracilis, and the resulting flattened occlusal surfaces, may indicate a preference for a durophagous diet. The tooth replacement (known only in C. thewissi) shows an early eruption of the permanent premolars. They are in function before the third molars are fully erupted. During the dominant phase I of the chewing cycle the jaw movement is very steep, almost orthal, with a slight mesiolingual direction and changes into a horizontal movement during phase II. The enamel microstructure shows Hunter-Schreger-bands (HSB) in the inner zone of the enamel. In some teeth the transverse orientation of the HSB is modified into a zig-zag pattern, possibly an additional indicator of a durophagous diet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号