首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   21篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   3篇
  2012年   7篇
  2011年   11篇
  2010年   14篇
  2009年   10篇
  2008年   12篇
  2007年   5篇
  2006年   5篇
  2005年   1篇
  2004年   5篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   3篇
  1992年   1篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1958年   1篇
  1955年   1篇
  1951年   1篇
  1948年   1篇
  1947年   1篇
排序方式: 共有144条查询结果,搜索用时 15 毫秒
41.
Global climate change is likely to modify the ecological consequences of currently acting stressors, but potentially important interactions between climate warming and land‐use related stressors remain largely unknown. Agriculture affects streams and rivers worldwide, including via nutrient enrichment and increased fine sediment input. We manipulated nutrients (simulating agricultural run‐off) and deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0–6°C above ambient) simultaneously in 128 streamside mesocosms to determine the individual and combined effects of the three stressors on macroinvertebrate community dynamics (community composition and body size structure of benthic, drift and insect emergence assemblages). All three stressors had pervasive individual effects, but in combination often produced additive or antagonistic outcomes. Changes in benthic community composition showed a complex interplay among habitat quality (with or without sediment), resource availability (with or without nutrient enrichment) and the behavioural/physiological tendency to drift or emerge as temperature rose. The presence of sediment and raised temperature both resulted in a community of smaller organisms. Deposited fine sediment strongly increased the propensity to drift. Stressor effects were most prominent in the benthic assemblage, frequently reflected by opposite patterns in individuals quitting the benthos (in terms of their propensity to drift or emerge). Of particular importance is that community measures of stream health routinely used around the world (taxon richness, EPT richness and diversity) all showed complex three‐way interactions, with either a consistently stronger temperature response or a reversal of its direction when one or both agricultural stressors were also in operation. The negative effects of added fine sediment, which were often stronger at raised temperatures, suggest that streams already impacted by high sediment loads may be further degraded under a warming climate. However, the degree to which this will occur may also depend on in‐stream nutrient conditions.  相似文献   
42.
A dipeptide hydrolase from the brush border of guinea-pig intestinal mucosa was purified. The enzyme resembles another dipeptide hydrolase isolated from the cytosol fraction of intestinal mucosa. Studies on the binding of cytosol peptide hydrolase to brush-border membranes indicate that the enzyme found in the brush border may be a cytoplasmic contaminant.  相似文献   
43.
Reovirus replication and assembly are thought to occur within cytoplasmic inclusion bodies, which we call viral factories. A strain-dependent difference in the morphology of these structures reflects more effective microtubule association by the mu2 core proteins of some viral strains, which form filamentous factories, than by those of others, which form globular factories. For this report, we identified and characterized another strain-dependent attribute of the factories, namely, the extent to which they colocalized with conjugated ubiquitin (cUb). Among 16 laboratory strains and field isolates, the extent of factory costaining for cUb paralleled factory morphology, with globular strains exhibiting higher levels by far. In reassortant viruses, factory costaining for cUb mapped primarily to the mu2-encoding M1 genome segment, although contributions by the lambda3- and lambda2-encoding L1 and L2 genome segments were also evident. Immunoprecipitations revealed that cells infected with globular strains contained higher levels of ubiquitinated mu2 (Ub-mu2). In M1-transfected cells, cUb commonly colocalized with aggregates formed by mu2 from globular strains but not with microtubules coated by mu2 from filamentous strains, and immunoprecipitations revealed that mu2 from globular strains displayed higher levels of Ub-mu2. Allelic changes at mu2 residue 208 determined these differences. Nocodazole treatment of cells infected with filamentous strains resulted in globular factories that still showed low levels of costaining for cUb, indicating that higher levels of costaining were not a direct result of decreased microtubule association. The factories of globular strains, or their mu2 proteins expressed in transfected cells, were furthermore shown to gain microtubule association and to lose colocalization with cUb when cells were grown at reduced temperature. From the sum of these findings, we propose that mu2 from globular strains is more prone to temperature-dependent misfolding and as a result displays increased aggregation, increased levels of Ub-mu2, and decreased association with microtubules. Because so few of the viral strains formed factories that were regularly associated with ubiquitinated proteins, we conclude that reovirus factories are generally distinct from cellular aggresomes.  相似文献   
44.
45.
46.
47.
Predictions on the consequences of the rapidly increasing atmospheric CO2 levels and associated climate warming for population dynamics, ecological community structure and ecosystem functioning depend on mechanistic energetic models of temperature effects on populations and their interactions. However, such mechanistic approaches combining warming effects on metabolic (energy loss of organisms) and feeding rates (energy gain by organisms) remain a key, yet elusive, goal. Aiming to fill this void, we studied the metabolic rates and functional responses of three differently sized, predatory ground beetles on one mobile and one more resident prey species across a temperature gradient (5, 10, 15, 20, 25 and 30 °C). Synthesizing metabolic and functional‐response theory, we develop novel mechanistic predictions how predator–prey interaction strengths (i.e., functional responses) should respond to warming. Corroborating prior theory, warming caused strong increases in metabolism and decreases in handling time. Consistent with our novel model, we found increases in predator attack rates on a mobile prey, whereas attack rates on a mostly resident prey remained constant across the temperature gradient. Together, these results provide critically important information that environmental warming generally increases the direct short‐term per capita interaction strengths between predators and their prey as described by functional‐response models. Nevertheless, the several fold stronger increase in metabolism with warming caused decreases in energetic efficiencies (ratio of per capita feeding rate to metabolic rate) for all predator–prey interactions. This implies that warming of natural ecosystems may dampen predator–prey oscillations thus stabilizing their dynamics. The severe long‐term implications; however, include predator starvation due to energetic inefficiency despite abundant resources.  相似文献   
48.
The Arctic Warbler Phylloscopus borealis breeds across the northern Palaearctic and northwestern‐most Nearctic, from northern Scandinavia to Alaska, extending south to southern Japan, and winters in Southeast Asia, the Philippines and Indonesia. Several subspecies have been described based on subtle morphological characteristics, although the taxonomy varies considerably among different authors. A recent study (T. Saitoh et al. (2010) BMC Evol. Biol. 10 : 35) identified three main mitochondrial DNA clades, corresponding to: (1) continental Eurasia and Alaska, (2) south Kamchatka, Sakhalin and northeast Hokkaido, and (3) most of Japan (Honshu, Shikoku, Kyushu). These three clades were estimated to have diverged during the late Pliocene to early Pleistocene (border at c. 2.6 million years ago). Differences in morphometrics have also been reported among members of the three clades (T. Saitoh et al. (2008) Ornithol. Sci. 7 : 135–142). Here we analyse songs and calls from throughout the range of the Arctic Warbler, and conclude that these differ markedly and consistently among the populations representing the three mitochondrial clades. Kurile populations, for which no sequence data are available, are shown to belong to the second clade. To determine the correct application of available scientific names, mitochondrial DNA was sequenced from three name‐bearing type specimens collected on migration or in the winter quarters. Based on the congruent variation in mitochondrial DNA, morphology and vocalizations, we propose that three species be recognized: Arctic Warbler Phylloscopus borealis (sensu stricto) (continental Eurasia and Alaska), Kamchatka Leaf Warbler Phylloscopus examinandus (Kamchatka (at least the southern part), Sakhalin, Hokkaido and Kurile Islands), and Japanese Leaf Warbler Phylloscopus xanthodryas (Japan except Hokkaido).  相似文献   
49.
We have previously used cyclic nucleotide-gated (CNG) channels as sensors to measure cAMP signals in human embryonic kidney (HEK)-293 cells. We found that prostaglandin E1 (PGE1) triggered transient increases in cAMP concentration near the plasma membrane, whereas total cAMP levels rose to a steady plateau over the same time course. In addition, we presented evidence that the decline in the near-membrane cAMP levels was due primarily to a PGE1-induced stimulation of phosphodiesterase (PDE) activity, and that the differences between near-membrane and total cAMP levels were largely due to diffusional barriers and differential PDE activity. Here, we examine the mechanisms regulating transient, near-membrane cAMP signals. We observed that 5-min stimulation of HEK-293 cells with prostaglandins triggered a two- to threefold increase in PDE4 activity. Extracellular application of H89 (a PKA inhibitor) inhibited stimulation of PDE4 activity. Similarly, when we used CNG channels to monitor cAMP signals we found that both extracellular and intracellular (via the whole-cell patch pipette) application of H89, or the highly selective PKA inhibitor, PKI, prevented the decline in prostaglandin-induced responses. Following pretreatment with rolipram (a PDE4 inhibitor), H89 had little or no effect on near-membrane or total cAMP levels. Furthermore, disrupting the subcellular localization of PKA with the A-kinase anchoring protein (AKAP) disruptor Ht31 prevented the decline in the transient response. Based on these data we developed a plausible kinetic model that describes prostaglandin-induced cAMP signals. This model has allowed us to quantitatively demonstrate the importance of PKA-mediated stimulation of PDE4 activity in shaping near-membrane cAMP signals. G protein signaling; protein kinase A; phosphodiesterase; A-kinase anchoring protein; CNG channel  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号